Difference between revisions of "2017 AMC 8 Problems/Problem 3"

(Created page with "To solve the equation<math>\sqrt{16\sqrt{8\sqrt{4}}}</math>. The square root of four is 2. Multiply this by 8 to get 16, and the square root of sixteen is 4, and multiply this...")
 
m (Solution 1)
 
(14 intermediate revisions by 13 users not shown)
Line 1: Line 1:
To solve the equation<math>\sqrt{16\sqrt{8\sqrt{4}}}</math>. The square root of four is 2. Multiply this by 8 to get 16, and the square root of sixteen is 4, and multiply this by 16 to get 64. The square root of 64 is 8, hence the answer (C)
+
==Problem==
 +
 
 +
What is the value of the expression <math>\sqrt{16\sqrt{8\sqrt{4}}}</math>?
 +
 
 +
<math>\textbf{(A) }4\qquad\textbf{(B) }4\sqrt{2}\qquad\textbf{(C) }8\qquad\textbf{(D) }8\sqrt{2}\qquad\textbf{(E) }16</math>
 +
 
 +
==Solution 1==
 +
 
 +
<math>\sqrt{16\sqrt{8\sqrt{4}}}</math> = <math>\sqrt{16\sqrt{8\cdot 2}}</math> = <math>\sqrt{16\sqrt{16}}</math> = <math>\sqrt{16\cdot 4}</math> = <math>\sqrt{64}</math> = <math>\boxed{\textbf{(C)}\ 8}</math>.
 +
 
 +
==Worse Solution==
 +
~ Sahan
 +
 
 +
We solve the general form expression <math>\sqrt{a\sqrt{b\sqrt{c}}}</math>. Note,
 +
<cmath>\sqrt{a\sqrt{b\sqrt{c}}}=(a^4b^2c^1)^\frac{1}{8}</cmath>
 +
Thus our answer is,
 +
<cmath>(16^4\cdot8^24^1)^\frac{1}{8}=16777216^{\frac{1}{8}}=8</cmath>
 +
 
 +
==Video Solution (CREATIVE THINKING!!!)==
 +
https://youtu.be/elN5lYfeKnw
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution==
 +
https://youtu.be/cY4NYSAD0vQ
 +
 
 +
https://youtu.be/H0WHiLy1cFg
 +
 
 +
~savannahsolver
 +
 
 +
==See Also==
 +
{{AMC8 box|year=2017|num-b=2|num-a=4}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 18:13, 4 July 2024

Problem

What is the value of the expression $\sqrt{16\sqrt{8\sqrt{4}}}$?

$\textbf{(A) }4\qquad\textbf{(B) }4\sqrt{2}\qquad\textbf{(C) }8\qquad\textbf{(D) }8\sqrt{2}\qquad\textbf{(E) }16$

Solution 1

$\sqrt{16\sqrt{8\sqrt{4}}}$ = $\sqrt{16\sqrt{8\cdot 2}}$ = $\sqrt{16\sqrt{16}}$ = $\sqrt{16\cdot 4}$ = $\sqrt{64}$ = $\boxed{\textbf{(C)}\ 8}$.

Worse Solution

~ Sahan

We solve the general form expression $\sqrt{a\sqrt{b\sqrt{c}}}$. Note, \[\sqrt{a\sqrt{b\sqrt{c}}}=(a^4b^2c^1)^\frac{1}{8}\] Thus our answer is, \[(16^4\cdot8^24^1)^\frac{1}{8}=16777216^{\frac{1}{8}}=8\]

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/elN5lYfeKnw

~Education, the Study of Everything

Video Solution

https://youtu.be/cY4NYSAD0vQ

https://youtu.be/H0WHiLy1cFg

~savannahsolver

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png