Difference between revisions of "2023 AMC 12A Problems/Problem 3"

(Created page with "Hey the solutions will be posted after the contest, most likely around a couple weeks afterwords. We are not going to leak the questions to you, best of luck and I hope you ge...")
 
m (Solution 5)
(44 intermediate revisions by 22 users not shown)
Line 1: Line 1:
Hey the solutions will be posted after the contest, most likely around a couple weeks afterwords. We are not going to leak the questions to you, best of luck and I hope you get a good score.
+
{{duplicate|[[2023 AMC 10A Problems/Problem 3|2023 AMC 10A #3]] and [[2023 AMC 12A Problems/Problem 3|2023 AMC 12A #3]]}}
  
-Jonathan Yu
+
==Problem==
 +
How many positive perfect squares less than <math>2023</math> are divisible by <math>5</math>?
 +
 
 +
<math>\textbf{(A) } 8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) } 12</math>
 +
 
 +
==Solution 2 (slightly refined)==
 +
Since <math>\left \lfloor{\sqrt{2023}}\right \rfloor = 44</math>, there are <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math> perfect squares less than 2023.
 +
 
 +
~not_slay
 +
 
 +
==Solution 3 ==
 +
Since <math>5</math> is square-free, each solution must be divisible by <math>5^2=25</math>. We take <math>\left \lfloor{\frac{2023}{25}}\right \rfloor = 80</math> and see that there are <math>\boxed{\textbf{(A) 8}}</math> positive perfect squares no greater than <math>80</math>.
 +
 
 +
~jwseph
 +
 
 +
==Solution 4 ==
 +
 
 +
Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can figure out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or  <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math> solutions.
 +
 
 +
~BlueShardow
 +
 
 +
==Solution 5 ==
 +
 
 +
The way of BlueShardow refined:
 +
 
 +
All it takes is to recall that 45 squared is 2025, and 45 is 5 x 9. So all the squares of 5 x 1, 5 x 2, 5 x 3 so on are divisible by 5. So the answer is 8. It can be done even if one does not remember that 45 squared is 2025, all it takes is intuition. One can easily see mentally that 5 x 8 that is 40 squared is 1600, and then one has to do just one more computation and see that 5 x 9 that is 45 squared exceeds 2023, so the answer is 8.
 +
 
 +
~edit by RobinDaBank
 +
 
 +
Note that you can find the square of any number that ends in 5 by taking all the numbers but the last one (let's call them A), then multiplying A(A+1). In the end, addend 25 to the end of the number. For example, 4 x 5 = 20. Therefore, 45 squared is 20 25.
 +
 
 +
~note by amadeus1011
 +
 
 +
==Video Solution by Power Solve==
 +
https://youtu.be/YXIH3UbLqK8?si=aIYHWEU82uUu21fQ&t=165
 +
 
 +
==Video Solution by Math-X ==
 +
https://youtu.be/cMgngeSmFCY?si=E0a8wvcNRoeg2A3X&t=422
 +
 
 +
== Video Solution by CosineMethod ==
 +
 
 +
https://www.youtube.com/watch?v=wNH6O8D-7dY
 +
 
 +
==Video Solution==
 +
 
 +
https://youtu.be/w7RBPIatRNE
 +
 
 +
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 +
 
 +
 
 +
==Video Solution ==
 +
https://youtu.be/Z3fmCkuHG3c
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution by Power Solve==
 +
https://www.youtube.com/watch?v=8huvzWTtgaU
 +
 
 +
==Video Solution by Pablo's Math==
 +
https://youtu.be/BNhRdnOu-jI
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2023|ab=A|num-b=2|num-a=4}}
 +
{{AMC12 box|year=2023|ab=A|num-b=2|num-a=4}}
 +
{{MAA Notice}}

Revision as of 15:52, 22 July 2024

The following problem is from both the 2023 AMC 10A #3 and 2023 AMC 12A #3, so both problems redirect to this page.

Problem

How many positive perfect squares less than $2023$ are divisible by $5$?

$\textbf{(A) } 8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) } 12$

Solution 2 (slightly refined)

Since $\left \lfloor{\sqrt{2023}}\right \rfloor = 44$, there are $\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}$ perfect squares less than 2023.

~not_slay

Solution 3

Since $5$ is square-free, each solution must be divisible by $5^2=25$. We take $\left \lfloor{\frac{2023}{25}}\right \rfloor = 80$ and see that there are $\boxed{\textbf{(A) 8}}$ positive perfect squares no greater than $80$.

~jwseph

Solution 4

Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can figure out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or $\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}$ solutions.

~BlueShardow

Solution 5

The way of BlueShardow refined:

All it takes is to recall that 45 squared is 2025, and 45 is 5 x 9. So all the squares of 5 x 1, 5 x 2, 5 x 3 so on are divisible by 5. So the answer is 8. It can be done even if one does not remember that 45 squared is 2025, all it takes is intuition. One can easily see mentally that 5 x 8 that is 40 squared is 1600, and then one has to do just one more computation and see that 5 x 9 that is 45 squared exceeds 2023, so the answer is 8.

~edit by RobinDaBank

Note that you can find the square of any number that ends in 5 by taking all the numbers but the last one (let's call them A), then multiplying A(A+1). In the end, addend 25 to the end of the number. For example, 4 x 5 = 20. Therefore, 45 squared is 20 25.

~note by amadeus1011

Video Solution by Power Solve

https://youtu.be/YXIH3UbLqK8?si=aIYHWEU82uUu21fQ&t=165

Video Solution by Math-X

https://youtu.be/cMgngeSmFCY?si=E0a8wvcNRoeg2A3X&t=422

Video Solution by CosineMethod

https://www.youtube.com/watch?v=wNH6O8D-7dY

Video Solution

https://youtu.be/w7RBPIatRNE

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


Video Solution

https://youtu.be/Z3fmCkuHG3c

~Education, the Study of Everything

Video Solution by Power Solve

https://www.youtube.com/watch?v=8huvzWTtgaU

Video Solution by Pablo's Math

https://youtu.be/BNhRdnOu-jI

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png