Difference between revisions of "2021 Fall AMC 12B Problems/Problem 13"

(Solution 2)
(Solution 3)
 
(15 intermediate revisions by 2 users not shown)
Line 17: Line 17:
  
 
==Solution 2==
 
==Solution 2==
Let <math>c=\frac{2\pi}{p}</math> where <math>p</math> is an odd prime number and <math>n</math> is a relatively prime number to <math>p</math>.
+
Eisenstein used such a quotient in his proof of [[quadratic reciprocity]]. Let <math>c=\frac{2\pi}{p}</math> where <math>p</math> is an odd prime number and <math>q</math> is any integer.
  
Then <math>\dfrac{\sin(nc)\sin(2nc)\ldots\sin(\frac{p-1}{2}nc)}{\sin(c)\sin(2c)\ldots\sin(\frac{p-1}{2}c)}</math> is the Legendre symbol of <math>\left(\frac{n}{p}\right)</math> as famous German Number Theoretician Ferdinand Gotthold Max Eisenstein used to prove the Legendre symbol. Any sensible person who researched Legendre symbols on wikipedia right before the competition would have gotten it in 5 seconds. Legendre symbol is calculated using quadratic reciprocity. <math>\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}</math>
+
Then <math>\dfrac{\sin(qc)\sin(2qc)\cdots\sin(\frac{p-1}{2}qc)}{\sin(c)\sin(2c)\cdots\sin(\frac{p-1}{2}c)}</math> is the Legendre symbol <math>\left(\frac{q}{p}\right)</math>. Legendre symbol is calculated using quadratic reciprocity which is <math>\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}</math>. The Legendre symbol <math>\left(\frac{3}{11}\right)=(-1)\left(\frac{11}{3}\right)=(-1)\left(\frac{-1}{3}\right)=(-1)(-1)=\boxed{\textbf{(E)}\ 1}</math>
https://en.wikipedia.org/wiki/Legendre_symbol#cite_ref-7
 
  
 
~Lopkiloinm
 
~Lopkiloinm
 +
 +
==Solution 3==
 +
We have that <math>5^2 \equiv 3 \pmod{11}</math>, so 3 is a quadratic residue mod 11. For quadratic residues, their Legendre symbol which we know is the answer from Solution 2 is <math>\boxed{\textbf{(E)}\ 1}</math>
 +
 +
==Video Solution (Just 2 min!)==
 +
https://youtu.be/S44IzCpzTeg
 +
 +
~<i>Education, the Study of Everything</i>
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021 Fall|ab=B|num-a=14|num-b=12}}
 
{{AMC12 box|year=2021 Fall|ab=B|num-a=14|num-b=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 18:52, 30 July 2024

Problem

Let $c = \frac{2\pi}{11}.$ What is the value of \[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}?\]

$\textbf{(A)}\ {-}1 \qquad\textbf{(B)}\ {-}\frac{\sqrt{11}}{5} \qquad\textbf{(C)}\ \frac{\sqrt{11}}{5} \qquad\textbf{(D)}\ \frac{10}{11} \qquad\textbf{(E)}\ 1$

Solution

Plugging in $c$, we get \[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}.\] Since $\sin(x+2\pi)=\sin(x),$ $\sin(2\pi-x)=\sin(-x),$ and $\sin(-x)=-\sin(x),$ we get \[\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{-10\pi}{11} \cdot \sin \frac{-4\pi}{11} \cdot \sin \frac{2\pi}{11} \cdot \sin \frac{8\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\boxed{\textbf{(E)}\ 1}.\]

~kingofpineapplz ~Ziyao7294 (minor edit)

Solution 2

Eisenstein used such a quotient in his proof of quadratic reciprocity. Let $c=\frac{2\pi}{p}$ where $p$ is an odd prime number and $q$ is any integer.

Then $\dfrac{\sin(qc)\sin(2qc)\cdots\sin(\frac{p-1}{2}qc)}{\sin(c)\sin(2c)\cdots\sin(\frac{p-1}{2}c)}$ is the Legendre symbol $\left(\frac{q}{p}\right)$. Legendre symbol is calculated using quadratic reciprocity which is $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$. The Legendre symbol $\left(\frac{3}{11}\right)=(-1)\left(\frac{11}{3}\right)=(-1)\left(\frac{-1}{3}\right)=(-1)(-1)=\boxed{\textbf{(E)}\ 1}$

~Lopkiloinm

Solution 3

We have that $5^2 \equiv 3 \pmod{11}$, so 3 is a quadratic residue mod 11. For quadratic residues, their Legendre symbol which we know is the answer from Solution 2 is $\boxed{\textbf{(E)}\ 1}$

Video Solution (Just 2 min!)

https://youtu.be/S44IzCpzTeg

~Education, the Study of Everything

See Also

2021 Fall AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png