Difference between revisions of "1971 AHSME Problems/Problem 7"

(replaced bad solution (had exceedingly poor formatting, unnecessary variable, and unclear explanations))
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<cmath>Let\ x\ equal\ 2^{-2k}
+
==Problem==
\
+
<math>2^{-(2k+1)}-2^{-(2k-1)}+2^{-2k}</math> is equal to
From\ this\ we\ get \frac{x}{2}-(\frac{-x}{\frac{-1}{2}})+x\ by\ using\ power\ rule\  
+
 
Now\ we\ can\ see\ this\ simplies\ to\ \frac{-x}{2}\
+
<math>\textbf{(A) }2^{-2k}\qquad \textbf{(B) }2^{-(2k-1)}\qquad \textbf{(C) }-2^{-(2k+1)}\qquad \textbf{(D) }0\qquad  \textbf{(E) }2</math>
Looking\ at\ \frac{x}{2} we\ can\ clearly\ see\ that\ \frac{-x}{2} is\ equal\ to\ -2^{-(2k+1)}\
+
 
Thus\ our\ answer\ is\ c</cmath>
+
==Solution==
 +
By using the properties of [[exponentiation#Basic Properties|exponents]], we can simplify the given expression as follows to obtain our answer:
 +
\begin{align*}
 +
2^{-(2k+1)} - 2^{-(2k-1)} + 2^{-2k} &= 2^{-2k-1} - 2^{-2k+1} + 2^{-2k} \
 +
&= \frac{2^{-2k}}2 - 2\cdot2^{-2k} + 2^{-2k} \\
 +
&= 2^{-2k}(\frac12 - 2 + 1) \
 +
&= 2^{-2k}(-\frac12) \
 +
&= -\frac{2^{-2k}}2 \
 +
&= -2^{-2k-1} \
 +
&= \boxed{\textbf{(C) }-2^{-(2k+1)}}.
 +
\end{align*}
 +
 
 +
== See Also ==
 +
{{AHSME 35p box|year=1971|num-b=6|num-a=8}}
 +
{{MAA Notice}}

Latest revision as of 10:07, 1 August 2024

Problem

$2^{-(2k+1)}-2^{-(2k-1)}+2^{-2k}$ is equal to

$\textbf{(A) }2^{-2k}\qquad \textbf{(B) }2^{-(2k-1)}\qquad \textbf{(C) }-2^{-(2k+1)}\qquad \textbf{(D) }0\qquad  \textbf{(E) }2$

Solution

By using the properties of exponents, we can simplify the given expression as follows to obtain our answer: 2(2k+1)2(2k1)+22k=22k122k+1+22k=22k2222k+22k=22k(122+1)=22k(12)=22k2=22k1=(C) 2(2k+1).

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png