Difference between revisions of "2020 AIME I Problems/Problem 13"
(→Solution 2(coordinate bash based)) |
Ericzzzqwq (talk | contribs) |
||
(60 intermediate revisions by 18 users not shown) | |||
Line 1: | Line 1: | ||
− | |||
== Problem == | == Problem == | ||
Point <math>D</math> lies on side <math>\overline{BC}</math> of <math>\triangle ABC</math> so that <math>\overline{AD}</math> bisects <math>\angle BAC.</math> The perpendicular bisector of <math>\overline{AD}</math> intersects the bisectors of <math>\angle ABC</math> and <math>\angle ACB</math> in points <math>E</math> and <math>F,</math> respectively. Given that <math>AB=4,BC=5,</math> and <math>CA=6,</math> the area of <math>\triangle AEF</math> can be written as <math>\tfrac{m\sqrt{n}}p,</math> where <math>m</math> and <math>p</math> are relatively prime positive integers, and <math>n</math> is a positive integer not divisible by the square of any prime. Find <math>m+n+p.</math> | Point <math>D</math> lies on side <math>\overline{BC}</math> of <math>\triangle ABC</math> so that <math>\overline{AD}</math> bisects <math>\angle BAC.</math> The perpendicular bisector of <math>\overline{AD}</math> intersects the bisectors of <math>\angle ABC</math> and <math>\angle ACB</math> in points <math>E</math> and <math>F,</math> respectively. Given that <math>AB=4,BC=5,</math> and <math>CA=6,</math> the area of <math>\triangle AEF</math> can be written as <math>\tfrac{m\sqrt{n}}p,</math> where <math>m</math> and <math>p</math> are relatively prime positive integers, and <math>n</math> is a positive integer not divisible by the square of any prime. Find <math>m+n+p.</math> | ||
+ | == Diagram == | ||
<asy> | <asy> | ||
Line 11: | Line 11: | ||
pen dotstyle = black; /* point style */ | pen dotstyle = black; /* point style */ | ||
real xmin = -10.645016481888238, xmax = 5.4445786933235505, ymin = 0.7766255516825293, ymax = 9.897545413994122; /* image dimensions */ | real xmin = -10.645016481888238, xmax = 5.4445786933235505, ymin = 0.7766255516825293, ymax = 9.897545413994122; /* image dimensions */ | ||
− | pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen rvwvcq = rgb(0. | + | pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen rvwvcq = rgb(0.8235294117647059,0.0396078431372549,0.07529411764705882); |
draw((-6.837129089839387,8.163360372429347)--(-6.8268938290378,5.895596632024835)--(-4.33118398380513,6.851781504978754)--cycle, linewidth(2) + rvwvcq); | draw((-6.837129089839387,8.163360372429347)--(-6.8268938290378,5.895596632024835)--(-4.33118398380513,6.851781504978754)--cycle, linewidth(2) + rvwvcq); | ||
Line 61: | Line 61: | ||
== Solution 1 == | == Solution 1 == | ||
− | Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{ | + | Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{3\sqrt{7}}{2}</math>. However, it's not too hard to see that <math>GB = HC = 1</math>, and therefore <math>[AGH] = [ABC]</math>. From here, we get that the area of <math>\triangle ABC</math> is <math>\frac{15\sqrt{7}}{14} \implies \boxed{036}</math>, by similarity. ~awang11 |
+ | |||
+ | ==Solution 2== | ||
+ | Let <math>M_A</math>, <math>M_B</math>, <math>M_C</math> be the midpoints of arcs <math>BC</math>, <math>CA</math>, <math>AB</math>. By Fact 5, we know that <math>M_AB = M_AC = M_AI</math>, and so by Ptolmey's theorem, we deduce that <cmath>AB\cdot M_AC + AC\cdot M_AB = BC\cdot M_AA \implies M_AA = 2M_AI.</cmath> | ||
+ | In particular, we have <math>AI = IM_A</math>. | ||
+ | <asy> | ||
+ | defaultpen(fontsize(10pt)); | ||
+ | size(200); | ||
+ | pair A, B, C, D, E, F, I, P, MA, MB, MC; | ||
+ | B = (0,0); | ||
+ | C = (5,0); | ||
+ | A = IP(Circle(B, 4), Circle(C, 6), 0); | ||
+ | I = incenter(A, B, C); | ||
+ | D = extension(A, I, B, C); | ||
+ | P = midpoint(A--D); | ||
+ | E = extension(P, rotate(90, P)*A, B, I); | ||
+ | F = extension(P, rotate(90, P)*A, C, I); | ||
+ | MA = IP(Line(A, I, 20), circumcircle(A, B, C), 1); | ||
+ | MB = IP(Line(B, I, 20), circumcircle(A, B, C), 1); | ||
+ | MC = IP(Line(C, I, 20), circumcircle(A, B, C), 1); | ||
+ | draw(A--B--C--cycle, orange); | ||
+ | draw(circumcircle(A, B, C), red); | ||
+ | draw(A--E--F--cycle, lightblue); | ||
+ | draw(E--D--F, lightblue); | ||
+ | draw(A--MA^^B--MB^^C--MC, heavygreen); | ||
+ | draw(MA--MB--MC--cycle, magenta); | ||
+ | dot("$A$", A, dir(120)); | ||
+ | dot("$B$", B, dir(220)); | ||
+ | dot("$C$", C, dir(320)); | ||
+ | dot("$D$", D, dir(230)); | ||
+ | dot("$E$", E, dir(330)); | ||
+ | dot("$F$", F, dir(250)); | ||
+ | dot("$I$", I, dir(80)); | ||
+ | dot("$M_A$", MA, dir(270)); | ||
+ | dot("$M_B$", MB, dir(60)); | ||
+ | dot("$M_C$", MC, dir(150)); | ||
+ | </asy> | ||
+ | Now the key claim is that: | ||
+ | |||
+ | <b>Claim:</b> <math>\triangle DEF</math> and <math>\triangle M_AM_BM_C</math> are homothetic at <math>I</math> with ratio <math>2</math>. | ||
+ | |||
+ | <i>Proof.</i> First, we show that <math>D</math> is the midpoint of <math>M_AI</math>. Indeed, we have | ||
+ | <cmath>\frac{ID}{DM_A} = \frac{BI}{BM_A}\cdot \frac{\sin\angle IBC}{\sin \angle CBM_A} = \frac{BI}{AI}\cdot\frac{\sin \angle B/2}{\sin \angle A/2} = 1</cmath> | ||
+ | by Ratio lemma and Law of Sines. | ||
+ | |||
+ | Now observe that: | ||
+ | * <math>\overline{M_BM_C}</math> is the perpendicular bisector of <math>\overline{AI}</math>, | ||
+ | * <math>\overline{EF}</math> is the perpendicular bisector of <math>\overline{AD}</math>, and | ||
+ | * <math>ID = AI/2</math>. | ||
+ | |||
+ | Combining these facts gives that <math>\overline{EF}</math> is a midline in <math>\triangle IM_BM_C</math>, which proves the claim. <math>\blacksquare</math> | ||
+ | |||
+ | To finish, we compute <math>[M_AM_BM_C]</math>, noting that <math>[AEF] = [DEF] = \tfrac{1}{4}[M_AM_BM_C]</math>. | ||
+ | |||
+ | By Heron's, we can calculate the circumradius <math>R = 8/\sqrt{7}</math>, and by Law of Cosines, we get | ||
+ | <cmath>\begin{align*}\cos A &= \frac{9}{16}\implies \cos A/2 = \frac{5}{\sqrt{32}} \ | ||
+ | \cos B &= \frac{1}{8} \implies \cos B/2 = \frac{3}{4} \ | ||
+ | \cos C &= \frac{3}{4} \implies \cos C/2 = \sqrt{\frac{7}{8}}.\end{align*}</cmath> | ||
+ | Then using <math>[XYZ] = 2R^2\sin X\sin Y\sin Z</math>, we can compute | ||
+ | <cmath>[M_AM_BM_C] = 2\cdot \frac{64}{7}\cdot \frac{5}{\sqrt{32}}\cdot \frac{3}{4}\cdot \frac{\sqrt{7}}{\sqrt{8}} = \frac{30\sqrt{7}}{7}.</cmath> | ||
+ | Thus <math>[AEF] = 15\sqrt{7}/14</math>, which gives a final answer of <math>\boxed{036}</math>. | ||
+ | |||
+ | ~pinetree1 | ||
+ | |||
+ | ==Solution 3(coord bash + basic geometry)== | ||
+ | Let <math>\overline{BC}</math> lie on the x-axis and <math>B</math> be the origin. <math>C</math> is <math>(5,0)</math>. Use Heron's formula to compute the area of triangle <math>ABC</math>. We have <math>s=\frac{15}{2}</math>. and <math>[ABC]=\sqrt{\frac{15 \cdot 7 \cdot 5 \cdot 3}{2^4}}=\frac{15\sqrt{7}}{4}</math>. We now find the altitude, which is <math>\frac{\frac{15\sqrt{7}}{2}}{5}=\frac{3\sqrt{7}}{2}</math>, which is the y-coordinate of <math>A</math>. We now find the x-coordinate of <math>A</math>, which satisfies <math>x^2 + (\frac{3\sqrt{7}}{2})^{2}=16</math>, which gives <math>x=\frac{1}{2}</math> since the triangle is acute. Now using the Angle Bisector Theorem, we have <math>\frac{4}{6}=\frac{BD}{CD}</math> and <math>BD+CD=5</math> to get <math>BD=2</math>. The coordinates of D are <math>(2,0)</math>. | ||
+ | Since we want the area of triangle <math>AEF</math>, we will find equations for perpendicular bisector of AD, and the other two angle bisectors. The perpendicular bisector is not too challenging: the midpoint of AD is <math>(\frac{5}{4}, \frac{3\sqrt{7}}{4})</math> and the slope of AD is <math>-\sqrt{7}</math>. The slope of the perpendicular bisector is <math>\frac{1}{\sqrt{7}}</math>. The equation is(in point slope form) <math>y-\frac{3\sqrt{7}}{4}=\frac{1}{\sqrt{7}}(x-\frac{5}{4})</math>. | ||
+ | The slope of AB, or in trig words, the tangent of <math>\angle ABC</math> is <math>3\sqrt{7}</math>. | ||
+ | Finding <math>\sin{\angle ABC}=\frac{\frac{3\sqrt{7}}{2}}{4}=\frac{3\sqrt{7}}{8}</math> and <math>\cos{\angle ABC}=\frac{\frac{1}{2}}{4}=\frac{1}{8}</math>. Plugging this in to half angle tangent, it gives <math>\frac{\frac{3\sqrt{7}}{8}}{1+\frac{1}{8}}=\frac{\sqrt{7}}{3}</math> as the slope of the angle bisector, since it passes through <math>B</math>, the equation is <math>y=\frac{\sqrt{7}}{3}x</math>. | ||
+ | Similarly, the equation for the angle bisector of <math>C</math> will be <math>y=-\frac{1}{\sqrt{7}}(x-5)</math>. | ||
+ | For <math>E</math> use the B-angle bisector and the perpendicular bisector of AD equations to intersect at <math>(3,\sqrt{7})</math>. | ||
+ | For <math>F</math> use the C-angle bisector and the perpendicular bisector of AD equations to intersect at <math>(\frac{1}{2}, \frac{9}{2\sqrt{7}})</math>. | ||
+ | The area of AEF is equal to <math>\frac{EF \cdot \frac{AD}{2}}{2}</math> since AD is the altitude of that triangle with EF as the base, with <math>\frac{AD}{2}</math> being the height. <math>EF=\frac{5\sqrt{2}}{\sqrt{7}}</math> and <math>AD=3\sqrt{2}</math>, so <math>[AEF]=\frac{15}{2\sqrt{7}}=\frac{15\sqrt{7}}{14}</math> which gives <math>\boxed{036}</math>. NEVER overlook coordinate bash in combination with beginner synthetic techniques.~vvluo | ||
+ | |||
+ | ==Solution 4 (Coordinate Bash + Trig)== | ||
+ | |||
+ | <asy> | ||
+ | size(8cm); defaultpen(fontsize(10pt)); | ||
+ | |||
+ | pair A,B,C,I,D,M,T,Y,Z,EE,F; | ||
+ | A=(0,3sqrt(7)); | ||
+ | B=(-1,0); | ||
+ | C=(9,0); | ||
+ | I=incenter(A,B,C); | ||
+ | D=extension(A,I,B,C); | ||
+ | M=(A+D)/2; | ||
+ | |||
+ | draw(B--EE,gray+dashed); | ||
+ | draw(C--F,gray+dashed); | ||
+ | draw(A--B--C--A); | ||
+ | draw(A--D); | ||
+ | draw(B--(5,sqrt(28))); | ||
+ | draw(M--(5,sqrt(28))); | ||
+ | draw(C--(0,9sqrt(7)/7)); | ||
+ | draw(M--(0,9sqrt(7)/7)); | ||
+ | dot("$A$",A,NW); | ||
+ | dot("$B$",B,SW); | ||
+ | dot("$C$",C,SE); | ||
+ | dot("$D$",D,S); | ||
+ | dot("$E$",(5,sqrt(28)),N); | ||
+ | dot("$M$",M,dir(70)); | ||
+ | dot("$F$",(0,9sqrt(7)/7),N); | ||
+ | |||
+ | label("$2$",B--D,S); | ||
+ | label("$3$",D--C,S); | ||
+ | label("$6$",A--C,N); | ||
+ | label("$4$",A--B,W); | ||
+ | </asy> | ||
+ | |||
+ | Let <math>B=(0,0)</math> and <math>BC</math> be the line <math>y=0</math>. | ||
+ | We compute that <math>\cos{\angle{ABC}}=\frac{1}{8}</math>, so <math>\tan{\angle{ABC}}=3\sqrt{7}</math>. | ||
+ | Thus, <math>A</math> lies on the line <math>y=3x\sqrt{7}</math>. The length of <math>AB</math> at a point <math>x</math> is <math>8x</math>, so <math>x=\frac{1}{2}</math>. | ||
+ | |||
+ | We now have the coordinates <math>A=\left(\frac{1}{2},\frac{3\sqrt{7}}{2}\right)</math>, <math>B=(0,0)</math> and <math>C=(5,0)</math>. | ||
+ | We also have <math>D=(2,0)</math> by the angle-bisector theorem and <math>M=\left(\frac{5}{4},\frac{3\sqrt{7}}{4}\right)</math> by taking the midpoint. | ||
+ | We have that because <math>\cos{\angle{ABC}}=\frac{1}{8}</math>, <math>\cos{\frac{\angle{ABC}}{2}}=\frac{3}{4}</math> by half angle formula. | ||
+ | |||
+ | We also compute <math>\cos{\angle{ACB}}=\frac{3}{4}</math>, so <math>\cos{\frac{\angle{ACB}}{2}}=\frac{\sqrt{14}}{4}</math>. | ||
+ | |||
+ | Now, <math>AD</math> has slope <math>-\frac{\frac{3\sqrt{7}}{2}}{2-\frac{1}{2}}=-\sqrt{7}</math>, so it's perpendicular bisector has slope <math>\frac{\sqrt{7}}{7}</math> and goes through <math>\left(\frac{5}{4},\frac{3\sqrt{7}}{4}\right)</math>. | ||
+ | |||
+ | We find that this line has equation <math>y=\frac{\sqrt{7}}{7}x+\frac{4\sqrt{7}}{7}</math>. | ||
+ | |||
+ | As <math>\cos{\angle{CBI}}=\frac{3}{4}</math>, we have that line <math>BI</math> has form <math>y=\frac{\sqrt{7}}{3}x</math>. | ||
+ | Solving for the intersection point of these two lines, we get <math>x=3</math> and thus <math>E=\left(3, \sqrt{7}\right)</math> | ||
+ | |||
+ | We also have that because <math>\cos{\angle{ICB}}=\frac{\sqrt{14}}{4}</math>, <math>CI</math> has form <math>y=-\frac{x\sqrt{7}}{7}+\frac{5\sqrt{7}}{7}</math>. | ||
+ | |||
+ | Intersecting the line <math>CI</math> and the perpendicular bisector of <math>AD</math> yields <math>-\frac{x\sqrt{7}}{7}+\frac{5\sqrt{7}}{7}=\frac{x\sqrt{7}}{7}+\frac{4\sqrt{7}}{7}</math>. | ||
+ | |||
+ | Solving this, we get <math>x=\frac{1}{2}</math> and so <math>F=\left(\frac{1}{2},\frac{9\sqrt{7}}{14}\right)</math>. | ||
+ | |||
+ | We now compute <math>EF=\sqrt{\left(\frac{5}{2}\right)^2+\left(\frac{5\sqrt{7}}{14}\right)^2}=\frac{5\sqrt{14}}{7}</math>. | ||
+ | We also have <math>MA=\sqrt{\left(\frac{3}{4}\right)^2+\left(\frac{3\sqrt{7}}{4}\right)^2}=\frac{3\sqrt{2}}{2}</math>. | ||
+ | |||
+ | As <math>{MA}\perp{EF}</math>, we have <math>[\triangle{AEF}]=\frac{1}{2}\left(\frac{3\sqrt{2}}{2}\times\frac{5\sqrt{14}}{7}\right)=\frac{15\sqrt{7}}{14}</math>. | ||
+ | |||
+ | |||
+ | The desired answer is <math>15+7+14=\boxed{036}</math> ~Imayormaynotknowcalculus | ||
+ | |||
+ | ==Solution 5 (Barycentric Coordinates)== | ||
+ | |||
+ | <asy> | ||
+ | size(8cm); defaultpen(fontsize(10pt)); | ||
+ | |||
+ | pair A,B,C,I,D,M,T,Y,Z,EE,F; | ||
+ | A=(0,3sqrt(7)); | ||
+ | B=(-1,0); | ||
+ | C=(9,0); | ||
+ | I=incenter(A,B,C); | ||
+ | D=extension(A,I,B,C); | ||
+ | M=(A+D)/2; | ||
+ | |||
+ | draw(B--EE,gray+dashed); | ||
+ | draw(C--F,gray+dashed); | ||
+ | draw(A--B--C--A); | ||
+ | draw(A--D); | ||
+ | draw(B--(5,sqrt(28))); | ||
+ | draw(M--(5,sqrt(28))); | ||
+ | draw(C--(0,9sqrt(7)/7)); | ||
+ | draw(M--(0,9sqrt(7)/7)); | ||
+ | dot("$A$",A,NW); | ||
+ | dot("$B$",B,SW); | ||
+ | dot("$C$",C,SE); | ||
+ | dot("$D$",D,S); | ||
+ | dot("$E$",(5,sqrt(28)),N); | ||
+ | dot("$M$",M,dir(70)); | ||
+ | dot("$F$",(0,9sqrt(7)/7),N); | ||
+ | |||
+ | label("$2$",B--D,S); | ||
+ | label("$3$",D--C,S); | ||
+ | label("$6$",A--C,N); | ||
+ | label("$4$",A--B,W); | ||
+ | </asy> | ||
+ | |||
+ | As usual, we will use homogenized barycentric coordinates. | ||
+ | |||
+ | We have that <math>AD</math> will have form <math>3z=2y</math>. Similarly, <math>CF</math> has form <math>5y=6x</math> and <math>BE</math> has form <math>5z=4x</math>. | ||
+ | Since <math>A=(1,0,0)</math> and <math>D=\left(0,\frac{3}{5},\frac{2}{5}\right)</math>, we also have <math>M=\left(\frac{1}{2},\frac{3}{10},\frac{1}{5}\right)</math>. | ||
+ | It remains to determine the equation of the line formed by the perpendicular bisector of <math>AD</math>. | ||
+ | |||
+ | This can be found using EFFT. Let a point <math>T</math> on <math>EF</math> have coordinates <math>(x, y, z)</math>. | ||
+ | We then have that the displacement vector <math>\overrightarrow{AD}=\left(-1, \frac{3}{5}, \frac{2}{5}\right)</math> and that the displacement vector <math>\overrightarrow{TM}</math> has form <math>\left(x-\frac{1}{2},y-\frac{3}{10},z-\frac{1}{5}\right)</math>. | ||
+ | Now, by EFFT, we have <math>5^2\left(\frac{3}{5}\times\left(z-\frac{1}{5}\right)+\frac{2}{5}\times\left(y-\frac{3}{10}\right)\right)+6^2\left(-1\times\left(z-\frac{1}{5}\right)+\frac{2}{5}\times\left(x-\frac{1}{2}\right)\right)+4^2\left(-1\times\left(y-\frac{3}{10}\right)+\frac{3}{5}\times\left(x-\frac{1}{2}\right)\right)=0</math>. | ||
+ | This equates to <math>8x-2y-7z=2</math>. | ||
+ | |||
+ | Now, intersecting this with <math>BE</math>, we have <math>5z=4x</math>, <math>8x-2y-7z=2</math>, and <math>x+y+z=1</math>. | ||
+ | This yields <math>x=\frac{2}{3}</math>, <math>y=-\frac{1}{5}</math>, and <math>z=\frac{8}{15}</math>, or <math>E=\left(\frac{2}{3},-\frac{1}{5},\frac{8}{15}\right)</math>. | ||
+ | |||
+ | Similarly, intersecting this with <math>CF</math>, we have <math>5y=6x</math>, <math>8x-2y-7z=2</math>, and <math>x+y+z=1</math>. | ||
+ | Solving this, we obtain <math>x=\frac{3}{7}</math>, <math>y=\frac{18}{35}</math>, and <math>z=\frac{2}{35}</math>, or <math>F=\left(\frac{3}{7},\frac{18}{35},\frac{2}{35}\right)</math>. | ||
+ | |||
+ | We finish by invoking the Barycentric Distance Formula twice; our first displacement vector being <math>\overrightarrow{FE}=\left(\frac{5}{21},-\frac{5}{7},\frac{10}{21}\right)</math>. | ||
+ | We then have <math>FE^2=-25\left(-\frac{5}{7}\cdot\frac{10}{21}\right)-36\left(\frac{5}{21}\cdot\frac{10}{21}\right)-16\left(\frac{5}{21}\cdot-\frac{5}{7}\right)=\frac{50}{7}</math>, thus <math>FE=\frac{5\sqrt{14}}{7}</math>. | ||
+ | |||
+ | Our second displacement vector is <math>\overrightarrow{AM}=\left(-\frac{1}{2},\frac{3}{10},\frac{1}{5}\right)</math>. | ||
+ | As a result, <math>AM^2=-25\left(\frac{3}{10}\cdot\frac{1}{5}\right)-36\left(-\frac{1}{2}\cdot\frac{1}{5}\right)-16\left(-\frac{1}{2}\cdot\frac{3}{10}\right)=\frac{9}{2}</math>, so <math>AM=\frac{3\sqrt{2}}{2}</math>. | ||
+ | |||
+ | As <math>{AM}\perp{EF}</math>, the desired area is <math>\frac{\frac{5\sqrt{14}}{7}\times\frac{3\sqrt{2}}{2}}{2}={\frac{15\sqrt{7}}{14}}\implies{m+n+p=\boxed{036}}</math>. ~Imayormaynotknowcalculus | ||
+ | |||
+ | |||
+ | <b>Remark</b>: The area of <math>\triangle{AEF}</math> can also be computed using the <i>Barycentric Area Formula</i>, although it may increase the risk of computational errors; there are also many different ways to proceed once the coordinates are determined. | ||
+ | |||
+ | ==Solution 6 (geometry+trig)== | ||
+ | |||
+ | <asy> | ||
+ | size(8cm); defaultpen(fontsize(10pt)); | ||
+ | |||
+ | pair A,B,C,I,D,M,T,Y,Z,EE,F; | ||
+ | A=(0,3sqrt(7)); | ||
+ | B=(-1,0); | ||
+ | C=(9,0); | ||
+ | I=incenter(A,B,C); | ||
+ | D=extension(A,I,B,C); | ||
+ | M=(A+D)/2; | ||
+ | |||
+ | draw(B--EE,gray+dashed); | ||
+ | draw(C--F,gray+dashed); | ||
+ | draw(A--B--C--A); | ||
+ | draw(A--D); | ||
+ | draw(A--(5,sqrt(28))); | ||
+ | draw(A--(0,9sqrt(7)/7)); | ||
+ | draw(D--(0,9sqrt(7)/7)); | ||
+ | draw(D--(5,sqrt(28))); | ||
+ | draw(B--(5,sqrt(28))); | ||
+ | draw(M--(5,sqrt(28))); | ||
+ | draw(C--(0,9sqrt(7)/7)); | ||
+ | draw(M--(0,9sqrt(7)/7)); | ||
+ | dot("$A$",A,NW); | ||
+ | dot("$B$",B,SW); | ||
+ | dot("$C$",C,SE); | ||
+ | dot("$D$",D,S); | ||
+ | dot("$E$",(5,sqrt(28)),N); | ||
+ | dot("$M$",M,dir(70)); | ||
+ | dot("$F$",(0,9sqrt(7)/7),N); | ||
+ | |||
+ | label("$2$",B--D,S); | ||
+ | label("$3$",D--C,S); | ||
+ | label("$6$",A--C,N); | ||
+ | label("$4$",A--B,W); | ||
+ | </asy> | ||
+ | |||
+ | To get the area of <math>\triangle AEF</math>, we try to find <math>AM</math> and <math>\angle EAF</math>. | ||
+ | |||
+ | Since <math>AD</math> is the angle bisector, we can get that <math>BD=2</math> and <math>CD=3</math>. By applying Stewart's Theorem, we can get that <math>AD=3\sqrt{2}</math>. Therefore <math>AM=\frac{3\sqrt{2}}{2}</math>. | ||
+ | |||
+ | Since <math>EF</math> is the perpendicular bisector of <math>AD</math>, we know that <math>AE = DE</math>. Since <math>BE</math> is the angle bisector of <math>\angle BAC</math>, | ||
+ | we know that <math>\angle ABE = \angle DBE</math>. By applying the Law of Sines to <math>\triangle ABE</math> and <math>\triangle DBE</math>, we know that | ||
+ | <math>\sin \angle BAE = \sin \angle BDE </math>. Since <math>BD</math> is not equal to <math>AB</math> and therefore these two triangles are not congruent, we know that <math>\angle BAE</math> and <math>\angle BDE</math> are supplementary. Then we know that <math>\angle ABD</math> and <math>\angle AED</math> are also supplementary. Given that <math>AE=DE</math>, we can get that <math>\angle DAE</math> is half of <math>\angle ABC</math>. Similarly, we have <math>\angle DAF</math> is half of <math>\angle ACB</math>. | ||
+ | |||
+ | By applying the Law of Cosines, we get <math>\cos \angle ABC = \frac{1}{8}</math>, and then <math>\sin \angle ABC = \frac{3\sqrt{7}}{8}</math>. Similarly, we can get <math>\cos \angle ACB = \frac{3}{4}</math> and <math>\sin \angle ACB = \frac{\sqrt{7}}{4}</math>. Based on some trig identities, we can compute that <math>\tan \angle DAE = \frac{\sin \angle ABC}{1 + \cos \angle ABC} = \frac{\sqrt{7}}{3}</math>, and <math>\tan \angle DAF = \frac{\sqrt{7}}{7}</math>. | ||
+ | |||
+ | Finally, the area of <math>\triangle AEF</math> equals <math>\frac{1}{2}AM^2(\tan \angle DAE + \tan \angle DAF)=\frac{15\sqrt{7}}{14}</math>. Therefore, the final answer is <math>15+7+14=\boxed{036}</math>. ~xamydad | ||
+ | |||
+ | <b>Remark</b>: I didn't figure out how to add segments <math>AF</math>, <math>AE</math>, <math>DF</math> and <math>DE</math>. Can someone please help add these segments? | ||
+ | |||
+ | (Added :) ~Math_Genius_164) | ||
+ | |||
+ | == Solution 7 == | ||
+ | [[Image:question13.png|frame|none|###px|]] | ||
+ | First and foremost <math>\big[\triangle{AEF}\big]=\big[\triangle{DEF}\big]</math> as <math>EF</math> is the perpendicular bisector of <math>AD</math>. Now note that quadrilateral <math>ABDF</math> is cyclic, because <math>\angle{ABF}=\angle{FBD}</math> and <math>FA=FD</math>. Similarly quadrilateral <math>AEDC</math> is cyclic, <cmath>\implies \angle{EDA}=\dfrac{C}{2}, \quad \angle{FDA}=\dfrac{B}{2}</cmath> | ||
+ | Let <math>A'</math>,<math>B'</math>, <math>C'</math> be the <math>A</math>,<math>B</math>, and <math>C</math> excenters of <math>\triangle{ABC}</math> respectively. Then it follows that <math>\triangle{DEF} \sim \triangle{A'C'B'}</math>. By angle bisector theorem we have <math>BD=2 \implies \dfrac{ID}{IA}=\dfrac{BD}{BA}=\dfrac{1}{2}</math>. Now let the feet of the perpendiculars from <math>I</math> and <math>A'</math> to <math>BC</math> be <math>X</math> and <math>Y</math> resptively. Then by tangents we have <cmath>BX=s-AC=\dfrac{3}{2} \implies XD=2-\dfrac{3}{2}=\dfrac{1}{2}</cmath> <cmath>CY=s-AC \implies YD=3-\dfrac{3}{2}=\dfrac{3}{2} \implies \dfrac{ID}{DA'}=\dfrac{XD}{YD}=\dfrac{1}{3} \implies \big[\triangle{DEF}\big]=\dfrac{1}{16}\big[\triangle{A'C'B'}\big]</cmath> From the previous ratios, <math>AI:ID:DA'=2:1:3 \implies AD=DA' \implies \big[\triangle{ABC}\big]=\big[\triangle{A'BC}\big]</math> Similarly we can find that <math>\big[\triangle{B'AC}\big]=2\big[\triangle{ABC}\big]</math> and <math>\big[\triangle{C'AB}\big]=\dfrac{4}{7}\big[\triangle{ABC}\big]</math> and thus <cmath>\big[\triangle{A'B'C'}\big]=\bigg(1+1+2+\dfrac{4}{7}\bigg)\big[\triangle{ABC}\big]=\dfrac{32}{7}\big[\triangle{ABC}\big] \implies \big[\triangle{DEF}\big]=\dfrac{2}{7}\big[\triangle{ABC}\big]=\dfrac{15\sqrt{7}}{14} \implies m+n+p = \boxed{036}</cmath> | ||
+ | -tkhalid | ||
+ | |||
+ | ==Solution 8 -Trigonometry(only)== | ||
+ | [[Image:Aime 13.png|frame|none|###px|]] | ||
+ | Trig values we use here: | ||
+ | |||
+ | <math>\cos A = \frac{9}{16}</math> | ||
+ | |||
+ | <math>\cos \frac{A}{2} = \frac{5}{4\sqrt2}</math> | ||
+ | |||
+ | <math>\sin \frac{A}{2} = \frac{\sqrt7}{4\sqrt2}</math> | ||
+ | |||
+ | <math>\cos \frac{B}{2} = \frac{3}{4}</math> | ||
+ | |||
+ | <math>\cos \frac{C}{2} = \frac{\sqrt7}{2\sqrt2}</math> | ||
+ | |||
+ | |||
+ | First let the incenter be <math>I</math>. Let <math>M</math> be the midpoint of minor arc <math>BC</math> on <math>(ABC)</math> and let <math>K</math> be the foot of <math>M</math> to <math>BC</math>. | ||
+ | |||
+ | We can find <math>AD</math> using Stewart's Theorem: from Angle Bisector Theorem <math>BD = 2</math> and <math>CD = 3</math>. Then it is easy to find that <math>AD = 3\sqrt3</math>. | ||
+ | |||
+ | Now we trig bash for <math>DI = MI - MD</math>. Notice that <math>MI = MB</math> from the Incenter Excenter Lemma. We obtain that <math>MB = \frac{BK}{\cos \frac{A}{2}} = \frac{\frac{5}{2}}{\frac{5}{4\sqrt2}}=2\sqrt2</math>. To get <math>MD</math> we angle chase to get <math>\angle KDM = \frac{A}{2}+C</math>. Then <cmath>\cos(\frac{A}{2}+C) = \cos\frac{A}{2}\cos C - \sin\frac{A}{2}\sin C = \frac{1}{2\sqrt2} = \frac{\frac{1}{2}}{MD}</cmath> gives <math>MD = \sqrt{2}</math>. This means <math>DI = \sqrt2</math>. | ||
+ | |||
+ | Now let <math>AI \cap EF = G</math>. It is easy to angle chase <math>\angle GIE = 90- \frac{B}{2}</math> and <math>\angle GIF = 90- \frac{C}{2}</math>. Since <math>GI = GD - ID = \frac{3\sqrt2}{2}-\sqrt2=\frac{\sqrt2}{2}</math>, we compute that <cmath>EF = EG + FG = \frac{\sqrt2}{2}(\cot B/2 + \cot C/2) = \frac{\sqrt2}{2}(\frac{3}{\sqrt7}+\sqrt7) = \frac{5\sqrt{14}}{7}</cmath> which implies <cmath>[AEF] = AG*EF/2 = \frac{3\sqrt2}{2} * \frac{5\sqrt{14}}{7} / 2 = \frac{15\sqrt7}{14}</cmath> which gives an answer of <math>\boxed{36}</math>. ~Leonard_my_dude~ | ||
+ | |||
+ | ==Solution 9 (Official MAA 1)== | ||
+ | Let <math>x = \angle BAD = \angle CAD</math>, <math>y = \angle CBE = \angle ABE</math>, and <math>z = \angle BCF = \angle ACF</math>. Notice that <math>x+y+z = 90^\circ</math>. | ||
+ | |||
+ | In <math>\triangle ABD</math>, segment <math>\overline{BE}</math> is the bisector of <math>\angle ABD</math>, and <math>E</math> lies on the perpendicular bisector of side <math>\overline{AD}</math>. Therefore <math>E</math> is the midpoint of arc <math>\stackrel{\textstyle\frown}{AD}</math> on the circumcircle of <math>\triangle ABD</math>. It follows that <math>\angle BED = \angle BAD = x</math> and <math>\angle EDA = \angle EBA = y</math>. Likewise, <math>ACDF</math> is cyclic, <math>\angle CFD = \angle CAD = x</math>, and <math>\angle FDA = \angle FCA = z</math>. Because <math>\overline{EF}</math> is the perpendicular bisector of <math>\overline{AD}</math>, triangles <math>AEF</math> and <math>DEF</math> are congruent, implying that | ||
+ | <cmath>\begin{align*} | ||
+ | [\triangle AEF] = [\triangle DEF] &= \frac{DE\cdot DF\cdot\sin(\angle EDF)}{2}\ | ||
+ | &= \frac{DE\cdot DF\cdot\sin(y+z)}{2} = \frac{DE\cdot DF\cdot\cos x}{2}. | ||
+ | \end{align*}</cmath> | ||
+ | <asy> | ||
+ | unitsize(0.8 cm); | ||
+ | |||
+ | pair A, B, C, D, E, F, I; | ||
+ | real angleC = aCos(3/4); | ||
+ | |||
+ | C = (0,0); | ||
+ | A = 6*dir(270 - angleC/2); | ||
+ | B = 5*dir(270 + angleC/2); | ||
+ | I = incenter(A,B,C); | ||
+ | D = extension(A, I, B, C); | ||
+ | E = extension((A + D)/2, (A + D)/2 + rotate(90)*(A - D), B, I); | ||
+ | F = extension((A + D)/2, (A + D)/2 + rotate(90)*(A - D), C, I); | ||
+ | |||
+ | draw(A--B--C--cycle); | ||
+ | draw(A--interp(A,D,1.4)); | ||
+ | draw(A--F--D--E--cycle); | ||
+ | draw(E--F); | ||
+ | draw(circumcircle(A,B,D)); | ||
+ | draw(B--interp(B,E,1.5)); | ||
+ | draw(C--interp(C,F,1.5)); | ||
+ | |||
+ | dot("$A$", A, SW); | ||
+ | dot("$B$", B, dir(0)); | ||
+ | dot("$C$", C, N); | ||
+ | dot("$D$", D, dir(0)); | ||
+ | dot("$E$", E, N); | ||
+ | dot("$F$", F, dir(0)); | ||
+ | </asy> | ||
+ | |||
+ | Applying the Law of Sines to <math>\triangle BED</math> and <math>\triangle CFD</math> gives<cmath>DE = BD\cdot\frac{\sin y}{\sin x}\text{~ and ~} DF = CD\cdot\frac{\sin z}{\sin x}.</cmath>By the Angle Bisector Theorem, <math>BD = 2</math> and <math>CD = 3</math>. Combining the above information yields | ||
+ | <cmath> | ||
+ | [\triangle AEF] = \frac{3\sin y\cdot\sin z\cdot\cos x}{\sin^2 x}. | ||
+ | </cmath>Applying the Law of Cosines to <math>\triangle ABC</math> gives <math>\cos 2x = \frac9{16}</math>, <math>\cos 2y = \frac1{8}</math>, and <math>\cos 2z = \frac34</math>. By the Half Angle Formulas,<cmath>\sin^2x = \frac7{32},~~ \cos x = \sqrt{\frac{25}{32}},~~ \sin y = \sqrt{\frac7{16}}, \text{~ and ~} \sin z = \sqrt{\frac18}.</cmath>Therefore | ||
+ | <cmath> | ||
+ | [\triangle AEF] = \frac{3\cdot\sqrt{\frac{7}{16}}\cdot\sqrt{\frac{1}{8}}\cdot\sqrt{\frac{25}{32}}} | ||
+ | {\frac{7}{32}} = \frac{15\sqrt{7}}{14}. | ||
+ | </cmath>The requested sum is <math>15+7+14 = 36</math>. | ||
+ | |||
+ | ==Solution 10 (Official MAA 2)== | ||
+ | Let the point <math>M</math> be the midpoint of <math>\overline{AD}</math>, let <math>I</math> be the incenter of <math>\triangle ABC</math> which is the common point of lines <math>AD</math>, <math>BE</math>, and <math>CF</math>, and let <math>r</math> be the inradius of <math>\triangle ABC</math>. The semiperimeter of <math>\triangle ABC</math> is<cmath>s = \frac{AB + BC + CA}2 = \frac{15}2,</cmath>and Heron's Formula gives the area of <math>\triangle ABC</math> as<cmath>\sqrt{s(s-AB)(s-BC)(s-CA)} = \frac{15\sqrt7}4.</cmath>This area is also <math>rs</math> implying that <math>r = \frac{\sqrt7}2</math>. Stewart's Theorem gives <math>AD =3\sqrt2</math>. Because the ratio of the areas of <math>\triangle IBC</math> and <math>\triangle ABC</math> is <math>\frac{ID}{AD},</math> it follows that<cmath>ID = AD\cdot\frac{\frac{r\cdot BC}2}{\frac{15\sqrt7}4} = \sqrt2.</cmath>Thus <math>IM = MD - ID = \frac{\sqrt2}2</math>. | ||
+ | |||
+ | <asy> | ||
+ | unitsize(0.8 cm); | ||
+ | |||
+ | pair A, B, C, D, E, F, I, M; | ||
+ | real angleC = aCos(3/4); | ||
+ | |||
+ | C = (0,0); | ||
+ | A = 6*dir(270 - angleC/2); | ||
+ | B = 5*dir(270 + angleC/2); | ||
+ | I = incenter(A,B,C); | ||
+ | D = extension(A, I, B, C); | ||
+ | E = extension((A + D)/2, (A + D)/2 + rotate(90)*(A - D), B, I); | ||
+ | F = extension((A + D)/2, (A + D)/2 + rotate(90)*(A - D), C, I); | ||
+ | M = (A + D)/2; | ||
+ | |||
+ | draw(A--B--C--cycle); | ||
+ | draw(A--interp(A,D,1.4)); | ||
+ | draw(A--F--D--E--cycle); | ||
+ | draw(E--F); | ||
+ | draw(B--interp(B,E,1.5)); | ||
+ | draw(C--interp(C,F,1.5)); | ||
+ | |||
+ | dot("$A$", A, SW); | ||
+ | dot("$B$", B, dir(0)); | ||
+ | dot("$C$", C, N); | ||
+ | dot("$D$", D, dir(0)); | ||
+ | dot("$E$", E, N); | ||
+ | dot("$F$", F, dir(0)); | ||
+ | dot("$I$", I, dir(120)); | ||
+ | dot("$M$", M, W); | ||
+ | </asy> | ||
+ | |||
+ | Note that <math>\angle EFI = 90^{\circ} - \angle FIA = 90^{\circ} - \angle CID = 90^{\circ} - \frac{\angle A}{2} - \frac{\angle C}{2} = \frac{\angle B}{2} = \angle IBC</math>. Thus | ||
+ | <math>\triangle IBC \sim \triangle IFE</math>. The height of <math>\triangle IBC</math> to <math>I</math> is <math>r=\frac{\sqrt7}2</math>, and the height of <math>\triangle IFE</math> to <math>I</math> is <math>IM=\frac{\sqrt2}2</math>, so <math>EF = BC\cdot \frac{IM}r = \frac{5\sqrt{14}}{7}</math>. The needed area of <math>\triangle AEF</math> is <math>\frac12\cdot EF\cdot \frac{AD}2 = \frac{15\sqrt7}{14}</math>, as above. | ||
+ | |||
+ | ==Solution 11 Bash for life== | ||
+ | Firstly, it is easy to find <math>BD=2,CD=3</math> with angle bisector theorem. | ||
+ | |||
+ | Using LOC and some trig formulas we get all those values: | ||
+ | <math>cos\angle{B}=\frac{1}{8},sin\angle{B}=\frac{3\sqrt{7}}{8},cos\angle{\frac{B}{2}}=\frac{3}{4},cos\angle{\frac{{ACB}}{2}}=\frac{\sqrt{14}}{4}</math> | ||
+ | Now we find the coordinates of points <math>A,E,F</math> and we apply shoelace theorem later. Point A's coordinates is <math>(4*\frac{1}{8},4*\frac{3\sqrt{7}}{8})=(\frac{1}{2},\frac{3\sqrt{7}}{2})</math>, Let <math>AJ</math> is perpendicular to <math>BC</math>, <math>tan\angle{JAD}=\frac{2-\frac{1}{2}}{\frac{3\sqrt{7}}{2}}=\frac{\sqrt{7}}{7}</math>, which means the slope of <math>FE</math> is <math>\frac{\sqrt{7}}{7}</math>. Find the coordinate of <math>M</math>, it is easy, <math>(\frac{5}{4},\frac{3\sqrt{7}}{4})</math>, the function <math>EF</math> is <math>y=\frac{\sqrt{7}x}{7}+\frac{4\sqrt{7}}{7}</math>. Now find the intersection of <math>EF,EB</math>, <math>\frac{\sqrt{7}x}{7}+\frac{4\sqrt{7}}{7}=\frac{\sqrt{7}x}{3}</math>, getting that <math>x=3,E(3,\sqrt{7})</math> | ||
+ | Now we look at line segment <math>CF</math>, since <math>cos\angle{\frac{ACB}{2}}=\frac{\sqrt{14}}{4},tan\angle{\frac{ACB}{2}}=\frac{\sqrt{7}}{7}</math>. Since the line passes <math>(5,0)</math>, we can set the equation to get the <math>CF:y=-\frac{\sqrt{7}}{7}+\frac{5\sqrt{7}}{7}</math>, find the intersection of <math>CF,EF</math>,<math>-\frac{\sqrt{7}x}{7}+\frac{5\sqrt{7}}{7}=\frac{\sqrt{7}x}{7}+\frac{4\sqrt{7}}{7}</math>, getting that <math>F:(\frac{1}{2},\frac{9\sqrt{7}}{14})</math> | ||
+ | and in the end we use shoelace theorem with coordinates of <math>A,F,E</math> getting the area <math>\frac{15\sqrt{7}}{14}</math> leads to the final answer <math>\boxed{36}</math> | ||
+ | |||
+ | ~bluesoul | ||
+ | |||
+ | ==Solution 12 (Simple geometry)== | ||
+ | [[File:2020 AIME I 13a.png|350px|right]] | ||
+ | Using the <i><b>Claim</i></b> (below) we get <math>I</math> is orthocenter of <math>\triangle DEF,\angle EDG = \beta,</math> | ||
+ | <math>\angle FDG = \gamma.</math> So area of <math>\triangle DEF</math> is | ||
+ | <cmath>[\triangle DEF] =\frac {DG \cdot FE}{2} = \frac {AD^2}{8} (\tan \beta + \tan \gamma).</cmath> | ||
+ | |||
+ | Semiperimeter of <math>\triangle ABC \hspace{10mm} s = \frac{15}{2},</math> so the bisector | ||
+ | <cmath>AD= \frac{2}{AB + AC}\sqrt{s(s-BC) \cdot AB\cdot AC} = 3\sqrt{2}.</cmath> | ||
+ | |||
+ | We get the inradius by applying Heron's formula | ||
+ | <cmath>r = \sqrt{\frac {(s-AB)(s-BC)(s-AC)}{s}} = \sqrt {\frac {3\cdot 5 \cdot 7}{15 \cdot 4}}=\frac {\sqrt {7}}{2}.</cmath> | ||
+ | |||
+ | We use formulas for inradius and get | ||
+ | <cmath> \tan \beta = \frac{r}{s – AC} = \frac {\sqrt {7}}{3} , \hspace{10mm} \tan \gamma = \frac{r}{s – AB} = \frac {\sqrt {7}}{7}.</cmath> | ||
+ | The area <math>\hspace{30mm} [\triangle DEF] = \frac{15 \sqrt 7}{14}.</math> | ||
+ | [[File:2020 AIME I 13.png|500px|right]] | ||
+ | <i><b>Claim</i></b> | ||
+ | |||
+ | Let <math>I</math> be incenter of <math>\triangle ABC.</math> Then bisector <math>\overline{BI},</math> perpendicular bisector of <math>\overline{AD},</math> and perpendicular dropped to bisector <math>\overline{CI}</math> from point <math>D</math> are concurrent. | ||
+ | |||
+ | <i><b>Proof</i></b> | ||
+ | |||
+ | Denote <math>\angle BAC = 2 \alpha, \angle ABC = 2\beta,\angle ACB = 2 \gamma.</math> | ||
+ | Then <math>\alpha + \beta + \gamma = 90^\circ.</math> | ||
+ | Denote <math>P</math> the intersection point of <math>BC</math> and the tangent line to the circumcircle at point <math>A.</math> | ||
+ | |||
+ | WLOC,<math>\hspace{20mm}\gamma > \beta</math> (case <math>\gamma = \beta</math> is trivial). | ||
+ | |||
+ | <math>\angle PAC = \angle ABC = 2 \beta</math> (this angles are measured by half the arc <math>\overset{\Large\frown} {AC}</math> of the circumcircle). | ||
+ | |||
+ | <cmath>\angle APC = \angle ACD - \angle PAC = 2(\gamma - \beta),</cmath> | ||
+ | <cmath>\angle ADP = 180^o – \angle DAC - \angle ACD = 180^o – \alpha – 2 \gamma = \alpha + 2 \beta = \angle DAP \implies AP = DP.</cmath> Therefore bisector of angle P coincite with the perpendicular bisector of <math>\overline{AD}</math>. | ||
+ | |||
+ | By applying the Law of Sines to <math>\triangle ABP</math> we get <math>\hspace{20mm}\frac {BP}{AP} = \frac {\sin 2 \gamma}{\sin 2 \beta.}</math> | ||
+ | |||
+ | Let <math>E</math> be crosspoint of <math>PG</math> and bisector <math>BI.</math> By applying the Law of Sines to <math>\triangle BEP</math> we get <cmath>\frac {EP}{BP} = \frac {\sin \beta}{\sin(180^o – \beta – (\gamma – \beta))}= \frac {\sin \beta}{\sin \gamma}.</cmath> | ||
+ | |||
+ | Let <math>E'</math> be crosspoint of <math>PG</math> and the perpendicular dropped to bisector <math>\overline{CI}</math> from point <math>D.</math> | ||
+ | <cmath>\frac {E'P}{DP} = \frac {\sin (90^\circ – \gamma)}{\sin(180^o - (90^o – \gamma) – (\gamma - \beta))}= \frac {\cos\gamma}{\cos \beta}.</cmath> | ||
+ | <math>\hspace{50mm}\frac {E'P} {EP} = \frac {E'P}{DP} \cdot \frac {AP}{BP} \cdot \frac {BP}{EP} = \frac {\cos\gamma}{\cos \beta} \cdot \frac {\sin 2\beta}{\sin 2\gamma}\cdot \frac {\sin\gamma}{\sin \beta} = 1 \implies E</math> coincide with <math>E'.</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Solution 13 (Trig)== | ||
+ | Denote <math>I</math> as the incenter of <math>\triangle ABC</math> and <math>M</math> as the intersecting point of <math>AD</math> and <math>EF</math>. | ||
+ | |||
+ | We solve this question based on this equation: <math>[\triangle AEF]=\dfrac{1}{2}\times AM\times (\dfrac{IM}{\tan{\angle EFI}}+\dfrac{IM}{\tan{\angle FEI}})</math>. | ||
+ | |||
+ | |||
+ | Firstly, let's compute the trig value of <math>\angle EFI</math> and <math>\angle FEI</math>. Using the Cosine Law and half-angle formula, we obtain: | ||
+ | <cmath>\cos{\angle B}=\dfrac{1}{8}, \sin{\dfrac{\angle B}{2}}=\dfrac{\sqrt{7}}{4}, \cos{\dfrac{\angle B}{2}}=\dfrac{3}{4}</cmath> | ||
+ | <cmath>\cos{\angle C}=\dfrac{3}{4}, \sin{\dfrac{\angle C}{2}}=\dfrac{1}{\sqrt{8}}, \cos{\dfrac{\angle C}{2}}=\dfrac{\sqrt{7}}{\sqrt{8}}</cmath> | ||
+ | |||
+ | Noticing that by angle chasing, <math>\angle EFI= 90^{\circ}-\angle FIA=90^{\circ}-\angle CID=90^{\circ}-(180^{\circ}-\dfrac{\angle A}{2}-\angle B-\dfrac{\angle C}{2})= \dfrac{\angle B}{2}</math>. | ||
+ | Similarly, <math>\angle FEI=\dfrac{\angle C}{2}</math>. | ||
+ | Thus, <math>\tan{\angle EFI}=\dfrac{\sqrt{7}}{3}</math> and <math>\tan{\angle FEI}=\dfrac{1}{\sqrt{7}}</math> | ||
+ | |||
+ | Then we find <math>AM</math>: by Stewart's theorem, <math>AM=\dfrac{AD}{2}=\dfrac{3\sqrt{2}}{2}</math>. | ||
+ | |||
+ | For <math>MI</math>, first noticing that <math>MI=MD-ID=\dfrac{3\sqrt{2}}{2}-ID</math>. | ||
+ | Then, by Angel Bisector's theorem, we have <math>BD=2, CD=3</math>, and applying Sine Law: | ||
+ | <cmath>\dfrac{ID}{\sin{\dfrac{\angle C}{2}}}=\dfrac{CD}{\sin{\angle CID}}</cmath> | ||
+ | <cmath>\dfrac{ID}{\sin{\dfrac{\angle C}{2}}}=\dfrac{CD}{\cos{\dfrac{\angle B}{2}}}</cmath> | ||
+ | Substituting the known values, we get <math>ID=\sqrt{2}</math>. Thus, <math>MI=\dfrac{\sqrt{2}}{2}</math> | ||
+ | |||
+ | Now, we already find all the unknown values in the very beginning equation. Substituting all the values, we obtain <math>[\triangle AEF]=\dfrac{15\sqrt{7}}{14}</math>, which gives a final answer of <math>\boxed{036}</math>. | ||
+ | |||
+ | ~Ericcc | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/NpB7zpy-yKM | ||
+ | |||
+ | ~MathProblemSolvingSkills.com | ||
+ | |||
==See Also== | ==See Also== | ||
{{AIME box|year=2020|n=I|num-b=12|num-a=14}} | {{AIME box|year=2020|n=I|num-b=12|num-a=14}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 05:56, 3 August 2024
Contents
[hide]- 1 Problem
- 2 Diagram
- 3 Solution 1
- 4 Solution 2
- 5 Solution 3(coord bash + basic geometry)
- 6 Solution 4 (Coordinate Bash + Trig)
- 7 Solution 5 (Barycentric Coordinates)
- 8 Solution 6 (geometry+trig)
- 9 Solution 7
- 10 Solution 8 -Trigonometry(only)
- 11 Solution 9 (Official MAA 1)
- 12 Solution 10 (Official MAA 2)
- 13 Solution 11 Bash for life
- 14 Solution 12 (Simple geometry)
- 15 Solution 13 (Trig)
- 16 Video Solution
- 17 See Also
Problem
Point lies on side of so that bisects The perpendicular bisector of intersects the bisectors of and in points and respectively. Given that and the area of can be written as where and are relatively prime positive integers, and is a positive integer not divisible by the square of any prime. Find
Diagram
Solution 1
Points are defined as shown. It is pretty easy to show that by spiral similarity at by some short angle chasing. Now, note that is the altitude of , as the altitude of . We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that , the altitude of . Similarly, the altitude of is the altitude of , or . However, it's not too hard to see that , and therefore . From here, we get that the area of is , by similarity. ~awang11
Solution 2
Let , , be the midpoints of arcs , , . By Fact 5, we know that , and so by Ptolmey's theorem, we deduce that In particular, we have . Now the key claim is that:
Claim: and are homothetic at with ratio .
Proof. First, we show that is the midpoint of . Indeed, we have by Ratio lemma and Law of Sines.
Now observe that:
- is the perpendicular bisector of ,
- is the perpendicular bisector of , and
- .
Combining these facts gives that is a midline in , which proves the claim.
To finish, we compute , noting that .
By Heron's, we can calculate the circumradius , and by Law of Cosines, we get Then using , we can compute Thus , which gives a final answer of .
~pinetree1
Solution 3(coord bash + basic geometry)
Let lie on the x-axis and be the origin. is . Use Heron's formula to compute the area of triangle . We have . and . We now find the altitude, which is , which is the y-coordinate of . We now find the x-coordinate of , which satisfies , which gives since the triangle is acute. Now using the Angle Bisector Theorem, we have and to get . The coordinates of D are . Since we want the area of triangle , we will find equations for perpendicular bisector of AD, and the other two angle bisectors. The perpendicular bisector is not too challenging: the midpoint of AD is and the slope of AD is . The slope of the perpendicular bisector is . The equation is(in point slope form) . The slope of AB, or in trig words, the tangent of is . Finding and . Plugging this in to half angle tangent, it gives as the slope of the angle bisector, since it passes through , the equation is . Similarly, the equation for the angle bisector of will be . For use the B-angle bisector and the perpendicular bisector of AD equations to intersect at . For use the C-angle bisector and the perpendicular bisector of AD equations to intersect at . The area of AEF is equal to since AD is the altitude of that triangle with EF as the base, with being the height. and , so which gives . NEVER overlook coordinate bash in combination with beginner synthetic techniques.~vvluo
Solution 4 (Coordinate Bash + Trig)
Let and be the line . We compute that , so . Thus, lies on the line . The length of at a point is , so .
We now have the coordinates , and . We also have by the angle-bisector theorem and by taking the midpoint. We have that because , by half angle formula.
We also compute , so .
Now, has slope , so it's perpendicular bisector has slope and goes through .
We find that this line has equation .
As , we have that line has form . Solving for the intersection point of these two lines, we get and thus
We also have that because , has form .
Intersecting the line and the perpendicular bisector of yields .
Solving this, we get and so .
We now compute . We also have .
As , we have .
The desired answer is ~Imayormaynotknowcalculus
Solution 5 (Barycentric Coordinates)
As usual, we will use homogenized barycentric coordinates.
We have that will have form . Similarly, has form and has form . Since and , we also have . It remains to determine the equation of the line formed by the perpendicular bisector of .
This can be found using EFFT. Let a point on have coordinates . We then have that the displacement vector and that the displacement vector has form . Now, by EFFT, we have . This equates to .
Now, intersecting this with , we have , , and . This yields , , and , or .
Similarly, intersecting this with , we have , , and . Solving this, we obtain , , and , or .
We finish by invoking the Barycentric Distance Formula twice; our first displacement vector being . We then have , thus .
Our second displacement vector is . As a result, , so .
As , the desired area is . ~Imayormaynotknowcalculus
Remark: The area of can also be computed using the Barycentric Area Formula, although it may increase the risk of computational errors; there are also many different ways to proceed once the coordinates are determined.
Solution 6 (geometry+trig)
To get the area of , we try to find and .
Since is the angle bisector, we can get that and . By applying Stewart's Theorem, we can get that . Therefore .
Since is the perpendicular bisector of , we know that . Since is the angle bisector of , we know that . By applying the Law of Sines to and , we know that . Since is not equal to and therefore these two triangles are not congruent, we know that and are supplementary. Then we know that and are also supplementary. Given that , we can get that is half of . Similarly, we have is half of .
By applying the Law of Cosines, we get , and then . Similarly, we can get and . Based on some trig identities, we can compute that , and .
Finally, the area of equals . Therefore, the final answer is . ~xamydad
Remark: I didn't figure out how to add segments , , and . Can someone please help add these segments?
(Added :) ~Math_Genius_164)
Solution 7
First and foremost as is the perpendicular bisector of . Now note that quadrilateral is cyclic, because and . Similarly quadrilateral is cyclic, Let ,, be the ,, and excenters of respectively. Then it follows that . By angle bisector theorem we have . Now let the feet of the perpendiculars from and to be and resptively. Then by tangents we have From the previous ratios, Similarly we can find that and and thus -tkhalid
Solution 8 -Trigonometry(only)
Trig values we use here:
First let the incenter be . Let be the midpoint of minor arc on and let be the foot of to .
We can find using Stewart's Theorem: from Angle Bisector Theorem and . Then it is easy to find that .
Now we trig bash for . Notice that from the Incenter Excenter Lemma. We obtain that . To get we angle chase to get . Then gives . This means .
Now let . It is easy to angle chase and . Since , we compute that which implies which gives an answer of . ~Leonard_my_dude~
Solution 9 (Official MAA 1)
Let , , and . Notice that .
In , segment is the bisector of , and lies on the perpendicular bisector of side . Therefore is the midpoint of arc on the circumcircle of . It follows that and . Likewise, is cyclic, , and . Because is the perpendicular bisector of , triangles and are congruent, implying that
Applying the Law of Sines to and givesBy the Angle Bisector Theorem, and . Combining the above information yields Applying the Law of Cosines to gives , , and . By the Half Angle Formulas,Therefore The requested sum is .
Solution 10 (Official MAA 2)
Let the point be the midpoint of , let be the incenter of which is the common point of lines , , and , and let be the inradius of . The semiperimeter of isand Heron's Formula gives the area of asThis area is also implying that . Stewart's Theorem gives . Because the ratio of the areas of and is it follows thatThus .
Note that . Thus . The height of to is , and the height of to is , so . The needed area of is , as above.
Solution 11 Bash for life
Firstly, it is easy to find with angle bisector theorem.
Using LOC and some trig formulas we get all those values: Now we find the coordinates of points and we apply shoelace theorem later. Point A's coordinates is , Let is perpendicular to , , which means the slope of is . Find the coordinate of , it is easy, , the function is . Now find the intersection of , , getting that Now we look at line segment , since . Since the line passes , we can set the equation to get the , find the intersection of ,, getting that and in the end we use shoelace theorem with coordinates of getting the area leads to the final answer
~bluesoul
Solution 12 (Simple geometry)
Using the Claim (below) we get is orthocenter of So area of is
Semiperimeter of so the bisector
We get the inradius by applying Heron's formula
We use formulas for inradius and get The area
Claim
Let be incenter of Then bisector perpendicular bisector of and perpendicular dropped to bisector from point are concurrent.
Proof
Denote Then Denote the intersection point of and the tangent line to the circumcircle at point
WLOC, (case is trivial).
(this angles are measured by half the arc of the circumcircle).
Therefore bisector of angle P coincite with the perpendicular bisector of .
By applying the Law of Sines to we get
Let be crosspoint of and bisector By applying the Law of Sines to we get
Let be crosspoint of and the perpendicular dropped to bisector from point coincide with
vladimir.shelomovskii@gmail.com, vvsss
Solution 13 (Trig)
Denote as the incenter of and as the intersecting point of and .
We solve this question based on this equation: .
Firstly, let's compute the trig value of and . Using the Cosine Law and half-angle formula, we obtain:
Noticing that by angle chasing, . Similarly, . Thus, and
Then we find : by Stewart's theorem, .
For , first noticing that . Then, by Angel Bisector's theorem, we have , and applying Sine Law: Substituting the known values, we get . Thus,
Now, we already find all the unknown values in the very beginning equation. Substituting all the values, we obtain , which gives a final answer of .
~Ericcc
Video Solution
~MathProblemSolvingSkills.com
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.