Difference between revisions of "2023 AMC 10A Problems"

m (Problem 11: better line break)
(31 intermediate revisions by 14 users not shown)
Line 1: Line 1:
{{AMC10 Problems|year=2023|ab=B}}
+
{{AMC10 Problems|year=2023|ab=A}}
  
 
==Problem 1==
 
==Problem 1==
  
 +
Cities <math>A</math> and <math>B</math> are <math>45</math> miles apart. Alicia lives in <math>A</math> and Beth lives in <math>B</math>. Alicia bikes towards <math>B</math> at <math>18</math> miles per hour. Leaving at the same time, Beth bikes toward <math>A</math> at <math>12</math> miles per hour. How many miles from City <math>A</math> will they be when they meet?
  
 +
<math>\textbf{(A) }20\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27</math>
  
[[2023 AMC 10B Problems/Problem 1|Solution]]
+
[[2023 AMC 10A Problems/Problem 1|Solution]]
  
 
==Problem 2==
 
==Problem 2==
  
 +
The weight of <math>\frac{1}{3}</math> of a large pizza together with <math>3 \frac{1}{2}</math> cups of orange slices is the same weight of <math>\frac{3}{4}</math> of a large pizza together with <math>\frac{1}{2}</math> cups of orange slices. A cup of orange slices weigh <math>\frac{1}{4}</math> of a pound. What is the weight, in pounds, of a large pizza?
  
[[2023 AMC 10B Problems/Problem 2|Solution]]
+
<math>\textbf{(A) }1\frac{4}{5}\qquad\textbf{(B) }2\qquad\textbf{(C) }2\frac{2}{5}\qquad\textbf{(D) }3\qquad\textbf{(E) }3\frac{3}{5}</math>
 +
 
 +
[[2023 AMC 10A Problems/Problem 2|Solution]]
  
 
==Problem 3==
 
==Problem 3==
  
 +
How many positive perfect squares less than <math>2023</math> are divisible by <math>5</math>?
  
[[2023 AMC 10B Problems/Problem 3|Solution]]
+
<math>\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12</math>
 +
 
 +
[[2023 AMC 10A Problems/Problem 3|Solution]]
  
 
==Problem 4==
 
==Problem 4==
  
 +
A quadrilateral has all integer side lengths, a perimeter of <math>26</math>, and one side of length <math>4</math>. What is the greatest possible length of one side of this quadrilateral?
 +
 +
<math>\textbf{(A) }9\qquad\textbf{(B) }10\qquad\textbf{(C) }11\qquad\textbf{(D) }12\qquad\textbf{(E) }13</math>
  
[[2023 AMC 10B Problems/Problem 4|Solution]]
+
[[2023 AMC 10A Problems/Problem 4|Solution]]
  
 
==Problem 5==
 
==Problem 5==
  
 +
How many digits are in the base-ten representation of <math>8^5 \cdot 5^{10} \cdot 15^5</math>?
 +
 +
<math>\textbf{(A) } 14 \qquad\textbf{(B) }15 \qquad\textbf{(C) }16 \qquad\textbf{(D) }17 \qquad\textbf{(E) } 18</math>
  
[[2023 AMC 10B Problems/Problem 5|Solution]]
+
[[2023 AMC 10A Problems/Problem 5|Solution]]
  
 
==Problem 6==
 
==Problem 6==
  
 +
An integer is assigned to each vertex of a cube. The value of an edge is defined to be the sum of the values of the two vertices it touches, and the value of a face is defined to be the sum of the values of the four edges surrounding it. The value of the cube is defined as the sum of the values of its six faces. Suppose the sum of the integers assigned to the vertices is <math>21</math>. What is the value of the cube?
  
[[2023 AMC 10B Problems/Problem 6|Solution]]
+
<math>\textbf{(A) } 42 \qquad \textbf{(B) } 63 \qquad \textbf{(C) } 84 \qquad \textbf{(D) } 126 \qquad \textbf{(E) } 252</math>
 +
 
 +
[[2023 AMC 10A Problems/Problem 6|Solution]]
  
 
==Problem 7==
 
==Problem 7==
  
 +
Janet rolls a standard <math>6</math>-sided die <math>4</math> times and keeps a running total of the numbers she rolls. What is the probability that at some point, her running total will equal <math>3?</math>
 +
 +
<math>\textbf{(A) }\frac{2}{9}\qquad\textbf{(B) }\frac{49}{216}\qquad\textbf{(C) }\frac{25}{108}\qquad\textbf{(D) }\frac{17}{72}\qquad\textbf{(E) }\frac{13}{54}</math>
  
[[2023 AMC 10B Problems/Problem 7|Solution]]
+
[[2023 AMC 10A Problems/Problem 7|Solution]]
  
 
==Problem 8==
 
==Problem 8==
  
 +
Barb the baker has developed a new temperature scale for her bakery called the Breadus scale, which is a linear function of the Fahrenheit scale. Bread rises at <math>110</math> degrees Fahrenheit, which is <math>0</math> degrees on the Breadus scale. Bread is baked at <math>350</math> degrees Fahrenheit, which is <math>100</math> degrees on the Breadus scale. Bread is done when its internal temperature is <math>200</math> degrees Fahrenheit. What is this, in degrees, on the Breadus scale?
 +
 +
<math>\textbf{(A) }33\qquad\textbf{(B) }34.5\qquad\textbf{(C) }36\qquad\textbf{(D) }37.5\qquad\textbf{(E) }39</math>
  
[[2023 AMC 10B Problems/Problem 8|Solution]]
+
[[2023 AMC 10A Problems/Problem 8|Solution]]
  
 
==Problem 9==
 
==Problem 9==
  
 +
A digital display shows the current date as an <math>8</math>-digit integer consisting of a <math>4</math>-digit year, followed by a <math>2</math>-digit month, followed by a <math>2</math>-digit date within the month. For example, Arbor Day this year is displayed as <math>20230428.</math> For how many dates in <math>2023</math> does each digit appear an even number of times in the <math>8</math>-digital display for that date?
  
[[2023 AMC 10B Problems/Problem 9|Solution]]
+
<math>\textbf{(A)}~5\qquad\textbf{(B)}~6\qquad\textbf{(C)}~7\qquad\textbf{(D)}~8\qquad\textbf{(E)}~9</math>
 +
 
 +
[[2023 AMC 10A Problems/Problem 9|Solution]]
  
 
==Problem 10==
 
==Problem 10==
  
 +
Maureen is keeping track of the mean of her quiz scores this semester. If Maureen scores an <math>11</math> on the next quiz, her mean will increase by <math>1</math>. If she scores an <math>11</math> on each of the next three quizzes, her mean will increase by <math>2</math>. What is the mean of her quiz scores currently?
  
 +
<math>\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) }6\qquad\textbf{(D) }7\qquad\textbf{(E) }8</math>
  
[[2023 AMC 10B Problems/Problem 10|Solution]]
+
[[2023 AMC 10A Problems/Problem 10|Solution]]
  
 
==Problem 11==
 
==Problem 11==
  
 +
A square of area <math>2</math> is inscribed in a square of area <math>3</math>, creating four congruent triangles, as shown below. What is the ratio of the shorter leg to the longer leg in the shaded right triangle?
 +
<asy>
 +
size(200);
 +
defaultpen(linewidth(0.6pt)+fontsize(10pt));
 +
real y = sqrt(3);
 +
pair A,B,C,D,E,F,G,H;
 +
A = (0,0);
 +
B = (0,y);
 +
C = (y,y);
 +
D = (y,0);
 +
E = ((y + 1)/2,y);
 +
F = (y, (y - 1)/2);
 +
G = ((y - 1)/2, 0);
 +
H = (0,(y + 1)/2);
 +
fill(H--B--E--cycle, gray);
 +
draw(A--B--C--D--cycle);
 +
draw(E--F--G--H--cycle);
 +
</asy>
  
 +
<math>\textbf{(A) }\frac15\qquad\textbf{(B) }\frac14\qquad\textbf{(C) }2-\sqrt3\qquad\textbf{(D) }\sqrt3-\sqrt2\qquad\textbf{(E) }\sqrt2-1</math>
  
[[2023 AMC 10B Problems/Problem 11|Solution]]
+
[[2023 AMC 10A Problems/Problem 11|Solution]]
  
 
==Problem 12==
 
==Problem 12==
  
 +
How many three-digit positive integers <math>N</math> satisfy the following properties?
 +
 +
* The number <math>N</math> is divisible by <math>7</math>.
 +
 +
* The number formed by reversing the digits of <math>N</math> is divisible by <math>5</math>.
  
 +
<math>\textbf{(A) } 13 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 16 \qquad \textbf{(E) } 17</math>
  
[[2023 AMC 10B Problems/Problem 12|Solution]]
+
[[2023 AMC 10A Problems/Problem 12|Solution]]
  
 
==Problem 13==
 
==Problem 13==
  
 +
Abdul and Chiang are standing <math>48</math> feet apart in a field. Bharat is standing in the same field as far from Abdul as possible so that the angle formed by his lines of sight to Abdul and Chiang measures <math>60^\circ</math>. What is the square of the distance (in feet) between Abdul and Bharat?
  
[[2023 AMC 10B Problems/Problem 13|Solution]]
+
<math>\textbf{(A) } 1728 \qquad \textbf{(B) } 2601 \qquad \textbf{(C) } 3072 \qquad \textbf{(D) } 4608 \qquad \textbf{(E) } 6912</math>
 +
 
 +
[[2023 AMC 10A Problems/Problem 13|Solution]]
  
 
==Problem 14==
 
==Problem 14==
  
 +
A number is chosen at random from among the first <math>100</math> positive integers, and a positive integer divisor of that number is then chosen at random. What is the probability that the chosen divisor is divisible by <math>11</math>?
  
 +
<math>\textbf{(A)}~\frac{4}{100}\qquad\textbf{(B)}~\frac{9}{200} \qquad \textbf{(C)}~\frac{1}{20} \qquad\textbf{(D)}~\frac{11}{200}\qquad\textbf{(E)}~\frac{3}{50}</math>
  
[[2023 AMC 10B Problems/Problem 14|Solution]]
+
[[2023 AMC 10A Problems/Problem 14|Solution]]
  
 
==Problem 15==
 
==Problem 15==
 +
An even number of circles are nested, starting with a radius of <math>1</math> and increasing by <math>1</math> each time, all sharing a common point. The region between every other circle is shaded, starting with the region inside the circle of radius <math>2</math> but outside the circle of radius <math>1.</math> An example showing <math>8</math> circles is displayed below. What is the least number of circles needed to make the total shaded area at least <math>2023\pi</math>?
 +
 +
<asy>
 +
size(6cm);
 +
pen greywhat;
 +
greywhat = RGB(105,105,105);
 +
filldraw(circle((8, 0), 8), greywhat);
 +
filldraw(circle((7, 0), 7), white);
 +
filldraw(circle((6, 0), 6), greywhat);
 +
filldraw(circle((5, 0), 5), white);
 +
filldraw(circle((4, 0), 4), greywhat);
 +
filldraw(circle((3, 0), 3), white);
 +
filldraw(circle((2, 0), 2), greywhat);
 +
filldraw(circle((1, 0), 1), white);
 +
</asy>
  
 +
<math>\textbf{(A) } 46 \qquad \textbf{(B) } 48 \qquad \textbf{(C) } 56 \qquad \textbf{(D) } 60 \qquad \textbf{(E) } 64</math>
  
[[2023 AMC 10B Problems/Problem 15|Solution]]
+
[[2023 AMC 10A Problems/Problem 15|Solution]]
  
 
==Problem 16==
 
==Problem 16==
  
  
 +
In a table tennis tournament every participant played every other participant exactly once. Although there were twice as many right-handed players as left-handed players, the number of games won by left-handed players was <math>40\%</math> more than the number of games won by right-handed players. (There were no ties and no ambidextrous players.) What is the total number of games played?
 +
 +
<math>\textbf{(A) }15\qquad\textbf{(B) }36\qquad\textbf{(C) }45\qquad\textbf{(D) }48\qquad\textbf{(E) }66</math>
  
[[2023 AMC 10B Problems/Problem 16|Solution]]
+
[[2023 AMC 10A Problems/Problem 16|Solution]]
  
 
==Problem 17==
 
==Problem 17==
 +
Let <math>ABCD</math> be a rectangle with <math>AB = 30</math> and <math>BC = 28</math>. Point <math>P</math> and <math>Q</math> lie on <math>\overline{BC}</math> and <math>\overline{CD}</math> respectively so that all sides of <math>\triangle{ABP}, \triangle{PCQ},</math> and <math>\triangle{QDA}</math> have integer lengths. What is the perimeter of <math>\triangle{APQ}</math>?
  
 +
<math>\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92</math>
  
[[2023 AMC 10B Problems/Problem 17|Solution]]
+
[[2023 AMC 10A Problems/Problem 17|Solution]]
  
 
==Problem 18==
 
==Problem 18==
 +
A rhombic dodecahedron is a solid with <math>12</math> congruent rhombus faces. At every vertex, <math>3</math> or <math>4</math> edges meet, depending on the vertex. How many vertices have exactly <math>3</math> edges meet?
  
 +
<math>\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9</math>
  
[[2023 AMC 10B Problems/Problem 18|Solution]]
+
[[2023 AMC 10A Problems/Problem 18|Solution]]
  
 
==Problem 19==
 
==Problem 19==
 +
The line segment formed by <math>A(1, 2)</math> and <math>B(3, 3)</math> is rotated to the line segment formed by <math>A'(3, 1)</math> and <math>B'(4, 3)</math> about the point <math>P(r, s)</math>. What is <math>|r-s|</math>?
  
 +
<math>\textbf{(A) } \frac{1}{4} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } \frac{3}{4}  \qquad \textbf{(D) } \frac{2}{3} \qquad  \textbf{(E) } 1</math>
  
[[2023 AMC 10B Problems/Problem 19|Solution]]
+
[[2023 AMC 10A Problems/Problem 19|Solution]]
  
 
==Problem 20==
 
==Problem 20==
 +
Each square in a <math>3\times3</math> grid of squares is colored red, white, blue, or green so that every <math>2\times2</math> square contains one square of each color. One such coloring is shown on the right below. How many different colorings are possible?
 +
 +
<asy>
 +
size(8cm);
 +
pen grey1, grey2, grey3;
 +
grey1 = RGB(211, 211, 211);
 +
grey2 = RGB(173, 173, 173);
 +
grey3 = RGB(138, 138, 138);
 +
 +
for(int i = 0; i < 4; ++i) {
 +
draw((i, 0)--(i, 3));
 +
draw((0, i)--(3, i));
 +
}
 +
 +
filldraw((5, 3)--(6, 3)--(6, 2)--(5, 2)--cycle, grey1);
 +
label('B', (5.5, 2.5));
 +
filldraw((6, 3)--(7, 3)--(7, 2)--(6, 2)--cycle, grey2);
 +
label('R', (6.5, 2.5));
 +
filldraw((7, 3)--(8, 3)--(8, 2)--(7, 2)--cycle, grey1);
 +
label('B', (7.5, 2.5));
 +
filldraw((5, 2)--(6, 2)--(6, 1)--(5, 1)--cycle, grey3);
 +
label('G', (5.5, 1.5));
 +
filldraw((6, 2)--(7, 2)--(7, 1)--(6, 1)--cycle, white);
 +
label('W', (6.5, 1.5));
 +
filldraw((7, 2)--(8, 2)--(8, 1)--(7, 1)--cycle, grey3);
 +
label('G', (7.5, 1.5));
 +
filldraw((5, 1)--(6, 1)--(6, 0)--(5, 0)--cycle, grey2);
 +
label('R', (5.5, 0.5));
 +
filldraw((6, 1)--(7, 1)--(7, 0)--(6, 0)--cycle, grey1);
 +
label('B', (6.5, 0.5));
 +
filldraw((7, 1)--(8, 1)--(8, 0)--(7, 0)--cycle, grey2);
 +
label('R', (7.5, 0.5));
 +
</asy>
  
 +
<math>\textbf{(A) }24\qquad\textbf{(B) }48\qquad\textbf{(C) }60\qquad\textbf{(D) }72\qquad\textbf{(E) }96</math>
  
[[2023 AMC 10B Problems/Problem 20|Solution]]
+
[[2023 AMC 10A Problems/Problem 20|Solution]]
  
 
==Problem 21==
 
==Problem 21==
 +
Let <math>P(x)</math> be the unique polynomial of minimal degree with the following properties:
 +
 +
*<math>P(x)</math> has a leading coefficient <math>1</math>,
 +
 +
*<math>1</math> is a root of <math>P(x)-1</math>,
 +
 +
*<math>2</math> is a root of <math>P(x-2)</math>,
 +
 +
*<math>3</math> is a root of <math>P(3x)</math>, and
 +
 +
*<math>4</math> is a root of <math>4P(x)</math>.
 +
 +
The roots of <math>P(x)</math> are integers, with one exception. The root that is not an integer can be written as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime integers. What is <math>m+n</math>?
  
 +
<math>\textbf{(A) }41\qquad\textbf{(B) }43\qquad\textbf{(C) }45\qquad\textbf{(D) }47\qquad\textbf{(E) }49</math>
  
[[2023 AMC 10B Problems/Problem 21|Solution]]
+
[[2023 AMC 10A Problems/Problem 21|Solution]]
  
 
==Problem 22==
 
==Problem 22==
 +
Circle <math>C_1</math> and <math>C_2</math> each have radius <math>1</math>, and the distance between their centers is <math>\frac{1}{2}</math>. Circle <math>C_3</math> is the largest circle internally tangent to both <math>C_1</math> and <math>C_2</math>. Circle <math>C_4</math> is internally tangent to both <math>C_1</math> and <math>C_2</math> and externally tangent to <math>C_3</math>. What is the radius of <math>C_4</math>?
  
 +
<asy>
 +
import olympiad;
 +
size(10cm);
 +
draw(circle((0,0),0.75));
 +
draw(circle((-0.25,0),1));
 +
draw(circle((0.25,0),1));
 +
draw(circle((0,6/7),3/28));
 +
pair A = (0,0), B = (-0.25,0), C = (0.25,0), D = (0,6/7), E = (-0.95710678118, 0.70710678118), F = (0.95710678118, -0.70710678118);
 +
dot(B^^C);
 +
draw(B--E, dashed);
 +
draw(C--F, dashed);
 +
draw(B--C);
 +
label("$C_4$", D);
 +
label("$C_1$", (-1.375, 0));
 +
label("$C_2$", (1.375,0));
 +
label("$\frac{1}{2}$", (0, -.125));
 +
label("$C_3$", (-0.4, -0.4));
 +
label("$1$", (-.85, 0.70));
 +
label("$1$", (.85, -.7));
 +
import olympiad;
 +
markscalefactor=0.005;
 +
</asy>
  
[[2023 AMC 10B Problems/Problem 22|Solution]]
+
<math>\textbf{(A) } \frac{1}{14} \qquad \textbf{(B) } \frac{1}{12} \qquad \textbf{(C) } \frac{1}{10} \qquad \textbf{(D) } \frac{3}{28} \qquad \textbf{(E) } \frac{1}{9}</math>
 +
 
 +
[[2023 AMC 10A Problems/Problem 22|Solution]]
  
 
==Problem 23==
 
==Problem 23==
 +
If the positive integer <math>c</math> has positive integer divisors <math>a</math> and <math>b</math> with <math>c = ab</math>, then <math>a</math> and <math>b</math> are said to be <math>\textit{complementary}</math> divisors of <math>c</math>. Suppose that <math>N</math> is a positive integer that has one complementary pair of divisors that differ by <math>20</math> and another pair of complementary divisors that differ by <math>23</math>. What is the sum of the digits of <math>N</math>?
  
 +
<math>\textbf{(A) } 9 \qquad \textbf{(B) } 13\qquad \textbf{(C) } 15 \qquad \textbf{(D) } 17 \qquad \textbf{(E) } 19</math>
  
[[2023 AMC 10B Problems/Problem 23|Solution]]
+
[[2023 AMC 10A Problems/Problem 23|Solution]]
  
 
==Problem 24==
 
==Problem 24==
 +
Six regular hexagonal blocks of side length <math>1</math> unit are arranged inside a regular hexagonal frame. Each block lies along an inside edge of the frame and is aligned with two other blocks, as shown in the figure below. The distance from any corner of the frame to the nearest vertex of a block is <math>\frac{3}{7}</math> unit. What is the area of the region inside the frame not occupied by the blocks?
 +
<asy>
 +
unitsize(1cm);
 +
draw(scale(3)*polygon(6));
 +
filldraw(shift(dir(0)*2+dir(120)*0.4)*polygon(6), lightgray);
 +
filldraw(shift(dir(60)*2+dir(180)*0.4)*polygon(6), lightgray);
 +
filldraw(shift(dir(120)*2+dir(240)*0.4)*polygon(6), lightgray);
 +
filldraw(shift(dir(180)*2+dir(300)*0.4)*polygon(6), lightgray);
 +
filldraw(shift(dir(240)*2+dir(360)*0.4)*polygon(6), lightgray);
 +
filldraw(shift(dir(300)*2+dir(420)*0.4)*polygon(6), lightgray);
 +
</asy>
 +
<math>\textbf{(A)}~\frac{13 \sqrt{3}}{3}\qquad\textbf{(B)}~\frac{216 \sqrt{3}}{49}\qquad\textbf{(C)}~\frac{9 \sqrt{3}}{2} \qquad\textbf{(D)}~ \frac{14 \sqrt{3}}{3}\qquad\textbf{(E)}~\frac{243 \sqrt{3}}{49}</math>
  
 
+
[[2023 AMC 10A Problems/Problem 24|Solution]]
[[2023 AMC 10B Problems/Problem 24|Solution]]
 
  
 
==Problem 25==
 
==Problem 25==
 +
If <math>A</math> and <math>B</math> are vertices of a polyhedron, define the distance <math>d(A, B)</math> to be the minimum number of edges of the polyhedron one must traverse in order to connect <math>A</math> and <math>B</math>. For example, <math>\overline{AB}</math> is an edge of the polyhedron, then <math>d(A, B) = 1</math>, but if <math>\overline{AC}</math> and <math>\overline{CB}</math> are edges and <math>\overline{AB}</math> is not an edge, then <math>d(A, B) = 2</math>. Let <math>Q</math>, <math>R</math>, and <math>S</math> be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of <math>20</math> equilateral triangles). What is the probability that <math>d(Q, R) > d(R, S)</math>?
  
 +
<math>\textbf{(A) }\frac{7}{22}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{3}{8}\qquad\textbf{(D) }\frac{5}{12}\qquad\textbf{(E) }\frac{1}{2}</math>
  
[[2023 AMC 10B Problems/Problem 25|Solution]]
+
[[2023 AMC 10A Problems/Problem 25|Solution]]
  
 
==See also==
 
==See also==

Revision as of 05:49, 14 August 2024

2023 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Cities $A$ and $B$ are $45$ miles apart. Alicia lives in $A$ and Beth lives in $B$. Alicia bikes towards $B$ at $18$ miles per hour. Leaving at the same time, Beth bikes toward $A$ at $12$ miles per hour. How many miles from City $A$ will they be when they meet?

$\textbf{(A) }20\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27$

Solution

Problem 2

The weight of $\frac{1}{3}$ of a large pizza together with $3 \frac{1}{2}$ cups of orange slices is the same weight of $\frac{3}{4}$ of a large pizza together with $\frac{1}{2}$ cups of orange slices. A cup of orange slices weigh $\frac{1}{4}$ of a pound. What is the weight, in pounds, of a large pizza?

$\textbf{(A) }1\frac{4}{5}\qquad\textbf{(B) }2\qquad\textbf{(C) }2\frac{2}{5}\qquad\textbf{(D) }3\qquad\textbf{(E) }3\frac{3}{5}$

Solution

Problem 3

How many positive perfect squares less than $2023$ are divisible by $5$?

$\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12$

Solution

Problem 4

A quadrilateral has all integer side lengths, a perimeter of $26$, and one side of length $4$. What is the greatest possible length of one side of this quadrilateral?

$\textbf{(A) }9\qquad\textbf{(B) }10\qquad\textbf{(C) }11\qquad\textbf{(D) }12\qquad\textbf{(E) }13$

Solution

Problem 5

How many digits are in the base-ten representation of $8^5 \cdot 5^{10} \cdot 15^5$?

$\textbf{(A) } 14 \qquad\textbf{(B) }15 \qquad\textbf{(C) }16 \qquad\textbf{(D) }17 \qquad\textbf{(E) } 18$

Solution

Problem 6

An integer is assigned to each vertex of a cube. The value of an edge is defined to be the sum of the values of the two vertices it touches, and the value of a face is defined to be the sum of the values of the four edges surrounding it. The value of the cube is defined as the sum of the values of its six faces. Suppose the sum of the integers assigned to the vertices is $21$. What is the value of the cube?

$\textbf{(A) } 42 \qquad \textbf{(B) } 63 \qquad \textbf{(C) } 84 \qquad \textbf{(D) } 126 \qquad \textbf{(E) } 252$

Solution

Problem 7

Janet rolls a standard $6$-sided die $4$ times and keeps a running total of the numbers she rolls. What is the probability that at some point, her running total will equal $3?$

$\textbf{(A) }\frac{2}{9}\qquad\textbf{(B) }\frac{49}{216}\qquad\textbf{(C) }\frac{25}{108}\qquad\textbf{(D) }\frac{17}{72}\qquad\textbf{(E) }\frac{13}{54}$

Solution

Problem 8

Barb the baker has developed a new temperature scale for her bakery called the Breadus scale, which is a linear function of the Fahrenheit scale. Bread rises at $110$ degrees Fahrenheit, which is $0$ degrees on the Breadus scale. Bread is baked at $350$ degrees Fahrenheit, which is $100$ degrees on the Breadus scale. Bread is done when its internal temperature is $200$ degrees Fahrenheit. What is this, in degrees, on the Breadus scale?

$\textbf{(A) }33\qquad\textbf{(B) }34.5\qquad\textbf{(C) }36\qquad\textbf{(D) }37.5\qquad\textbf{(E) }39$

Solution

Problem 9

A digital display shows the current date as an $8$-digit integer consisting of a $4$-digit year, followed by a $2$-digit month, followed by a $2$-digit date within the month. For example, Arbor Day this year is displayed as $20230428.$ For how many dates in $2023$ does each digit appear an even number of times in the $8$-digital display for that date?

$\textbf{(A)}~5\qquad\textbf{(B)}~6\qquad\textbf{(C)}~7\qquad\textbf{(D)}~8\qquad\textbf{(E)}~9$

Solution

Problem 10

Maureen is keeping track of the mean of her quiz scores this semester. If Maureen scores an $11$ on the next quiz, her mean will increase by $1$. If she scores an $11$ on each of the next three quizzes, her mean will increase by $2$. What is the mean of her quiz scores currently?

$\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) }6\qquad\textbf{(D) }7\qquad\textbf{(E) }8$

Solution

Problem 11

A square of area $2$ is inscribed in a square of area $3$, creating four congruent triangles, as shown below. What is the ratio of the shorter leg to the longer leg in the shaded right triangle? [asy] size(200); defaultpen(linewidth(0.6pt)+fontsize(10pt)); real y = sqrt(3); pair A,B,C,D,E,F,G,H; A = (0,0); B = (0,y); C = (y,y); D = (y,0); E = ((y + 1)/2,y); F = (y, (y - 1)/2); G = ((y - 1)/2, 0); H = (0,(y + 1)/2); fill(H--B--E--cycle, gray); draw(A--B--C--D--cycle); draw(E--F--G--H--cycle); [/asy]

$\textbf{(A) }\frac15\qquad\textbf{(B) }\frac14\qquad\textbf{(C) }2-\sqrt3\qquad\textbf{(D) }\sqrt3-\sqrt2\qquad\textbf{(E) }\sqrt2-1$

Solution

Problem 12

How many three-digit positive integers $N$ satisfy the following properties?

  • The number $N$ is divisible by $7$.
  • The number formed by reversing the digits of $N$ is divisible by $5$.

$\textbf{(A) } 13 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 16 \qquad \textbf{(E) } 17$

Solution

Problem 13

Abdul and Chiang are standing $48$ feet apart in a field. Bharat is standing in the same field as far from Abdul as possible so that the angle formed by his lines of sight to Abdul and Chiang measures $60^\circ$. What is the square of the distance (in feet) between Abdul and Bharat?

$\textbf{(A) } 1728 \qquad \textbf{(B) } 2601 \qquad \textbf{(C) } 3072 \qquad \textbf{(D) } 4608 \qquad \textbf{(E) } 6912$

Solution

Problem 14

A number is chosen at random from among the first $100$ positive integers, and a positive integer divisor of that number is then chosen at random. What is the probability that the chosen divisor is divisible by $11$?

$\textbf{(A)}~\frac{4}{100}\qquad\textbf{(B)}~\frac{9}{200} \qquad \textbf{(C)}~\frac{1}{20} \qquad\textbf{(D)}~\frac{11}{200}\qquad\textbf{(E)}~\frac{3}{50}$

Solution

Problem 15

An even number of circles are nested, starting with a radius of $1$ and increasing by $1$ each time, all sharing a common point. The region between every other circle is shaded, starting with the region inside the circle of radius $2$ but outside the circle of radius $1.$ An example showing $8$ circles is displayed below. What is the least number of circles needed to make the total shaded area at least $2023\pi$?

[asy] size(6cm); pen greywhat; greywhat = RGB(105,105,105); filldraw(circle((8, 0), 8), greywhat); filldraw(circle((7, 0), 7), white); filldraw(circle((6, 0), 6), greywhat); filldraw(circle((5, 0), 5), white); filldraw(circle((4, 0), 4), greywhat); filldraw(circle((3, 0), 3), white); filldraw(circle((2, 0), 2), greywhat); filldraw(circle((1, 0), 1), white);  [/asy]

$\textbf{(A) } 46 \qquad \textbf{(B) } 48 \qquad \textbf{(C) } 56 \qquad \textbf{(D) } 60 \qquad \textbf{(E) } 64$

Solution

Problem 16

In a table tennis tournament every participant played every other participant exactly once. Although there were twice as many right-handed players as left-handed players, the number of games won by left-handed players was $40\%$ more than the number of games won by right-handed players. (There were no ties and no ambidextrous players.) What is the total number of games played?

$\textbf{(A) }15\qquad\textbf{(B) }36\qquad\textbf{(C) }45\qquad\textbf{(D) }48\qquad\textbf{(E) }66$

Solution

Problem 17

Let $ABCD$ be a rectangle with $AB = 30$ and $BC = 28$. Point $P$ and $Q$ lie on $\overline{BC}$ and $\overline{CD}$ respectively so that all sides of $\triangle{ABP}, \triangle{PCQ},$ and $\triangle{QDA}$ have integer lengths. What is the perimeter of $\triangle{APQ}$?

$\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92$

Solution

Problem 18

A rhombic dodecahedron is a solid with $12$ congruent rhombus faces. At every vertex, $3$ or $4$ edges meet, depending on the vertex. How many vertices have exactly $3$ edges meet?

$\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9$

Solution

Problem 19

The line segment formed by $A(1, 2)$ and $B(3, 3)$ is rotated to the line segment formed by $A'(3, 1)$ and $B'(4, 3)$ about the point $P(r, s)$. What is $|r-s|$?

$\textbf{(A) } \frac{1}{4} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } \frac{3}{4}   \qquad \textbf{(D) } \frac{2}{3} \qquad   \textbf{(E) } 1$

Solution

Problem 20

Each square in a $3\times3$ grid of squares is colored red, white, blue, or green so that every $2\times2$ square contains one square of each color. One such coloring is shown on the right below. How many different colorings are possible?

[asy] size(8cm); pen grey1, grey2, grey3; grey1 = RGB(211, 211, 211); grey2 = RGB(173, 173, 173); grey3 = RGB(138, 138, 138);  for(int i = 0; i < 4; ++i) { draw((i, 0)--(i, 3)); draw((0, i)--(3, i)); }  filldraw((5, 3)--(6, 3)--(6, 2)--(5, 2)--cycle, grey1); label('B', (5.5, 2.5)); filldraw((6, 3)--(7, 3)--(7, 2)--(6, 2)--cycle, grey2); label('R', (6.5, 2.5)); filldraw((7, 3)--(8, 3)--(8, 2)--(7, 2)--cycle, grey1); label('B', (7.5, 2.5)); filldraw((5, 2)--(6, 2)--(6, 1)--(5, 1)--cycle, grey3); label('G', (5.5, 1.5)); filldraw((6, 2)--(7, 2)--(7, 1)--(6, 1)--cycle, white); label('W', (6.5, 1.5)); filldraw((7, 2)--(8, 2)--(8, 1)--(7, 1)--cycle, grey3); label('G', (7.5, 1.5)); filldraw((5, 1)--(6, 1)--(6, 0)--(5, 0)--cycle, grey2); label('R', (5.5, 0.5)); filldraw((6, 1)--(7, 1)--(7, 0)--(6, 0)--cycle, grey1); label('B', (6.5, 0.5)); filldraw((7, 1)--(8, 1)--(8, 0)--(7, 0)--cycle, grey2); label('R', (7.5, 0.5)); [/asy]

$\textbf{(A) }24\qquad\textbf{(B) }48\qquad\textbf{(C) }60\qquad\textbf{(D) }72\qquad\textbf{(E) }96$

Solution

Problem 21

Let $P(x)$ be the unique polynomial of minimal degree with the following properties:

  • $P(x)$ has a leading coefficient $1$,
  • $1$ is a root of $P(x)-1$,
  • $2$ is a root of $P(x-2)$,
  • $3$ is a root of $P(3x)$, and
  • $4$ is a root of $4P(x)$.

The roots of $P(x)$ are integers, with one exception. The root that is not an integer can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers. What is $m+n$?

$\textbf{(A) }41\qquad\textbf{(B) }43\qquad\textbf{(C) }45\qquad\textbf{(D) }47\qquad\textbf{(E) }49$

Solution

Problem 22

Circle $C_1$ and $C_2$ each have radius $1$, and the distance between their centers is $\frac{1}{2}$. Circle $C_3$ is the largest circle internally tangent to both $C_1$ and $C_2$. Circle $C_4$ is internally tangent to both $C_1$ and $C_2$ and externally tangent to $C_3$. What is the radius of $C_4$?

[asy] import olympiad;  size(10cm);  draw(circle((0,0),0.75));  draw(circle((-0.25,0),1));  draw(circle((0.25,0),1));  draw(circle((0,6/7),3/28));  pair A = (0,0), B = (-0.25,0), C = (0.25,0), D = (0,6/7), E = (-0.95710678118, 0.70710678118), F = (0.95710678118, -0.70710678118); dot(B^^C);  draw(B--E, dashed); draw(C--F, dashed); draw(B--C);  label("$C_4$", D);  label("$C_1$", (-1.375, 0));  label("$C_2$", (1.375,0)); label("$\frac{1}{2}$", (0, -.125)); label("$C_3$", (-0.4, -0.4)); label("$1$", (-.85, 0.70)); label("$1$", (.85, -.7)); import olympiad;  markscalefactor=0.005;  [/asy]

$\textbf{(A) } \frac{1}{14} \qquad \textbf{(B) } \frac{1}{12} \qquad \textbf{(C) } \frac{1}{10} \qquad \textbf{(D) } \frac{3}{28} \qquad \textbf{(E) } \frac{1}{9}$

Solution

Problem 23

If the positive integer $c$ has positive integer divisors $a$ and $b$ with $c = ab$, then $a$ and $b$ are said to be $\textit{complementary}$ divisors of $c$. Suppose that $N$ is a positive integer that has one complementary pair of divisors that differ by $20$ and another pair of complementary divisors that differ by $23$. What is the sum of the digits of $N$?

$\textbf{(A) } 9 \qquad \textbf{(B) } 13\qquad \textbf{(C) } 15 \qquad \textbf{(D) } 17 \qquad \textbf{(E) } 19$

Solution

Problem 24

Six regular hexagonal blocks of side length $1$ unit are arranged inside a regular hexagonal frame. Each block lies along an inside edge of the frame and is aligned with two other blocks, as shown in the figure below. The distance from any corner of the frame to the nearest vertex of a block is $\frac{3}{7}$ unit. What is the area of the region inside the frame not occupied by the blocks? [asy] unitsize(1cm); draw(scale(3)*polygon(6)); filldraw(shift(dir(0)*2+dir(120)*0.4)*polygon(6), lightgray); filldraw(shift(dir(60)*2+dir(180)*0.4)*polygon(6), lightgray); filldraw(shift(dir(120)*2+dir(240)*0.4)*polygon(6), lightgray); filldraw(shift(dir(180)*2+dir(300)*0.4)*polygon(6), lightgray); filldraw(shift(dir(240)*2+dir(360)*0.4)*polygon(6), lightgray); filldraw(shift(dir(300)*2+dir(420)*0.4)*polygon(6), lightgray); [/asy] $\textbf{(A)}~\frac{13 \sqrt{3}}{3}\qquad\textbf{(B)}~\frac{216 \sqrt{3}}{49}\qquad\textbf{(C)}~\frac{9 \sqrt{3}}{2} \qquad\textbf{(D)}~ \frac{14 \sqrt{3}}{3}\qquad\textbf{(E)}~\frac{243 \sqrt{3}}{49}$

Solution

Problem 25

If $A$ and $B$ are vertices of a polyhedron, define the distance $d(A, B)$ to be the minimum number of edges of the polyhedron one must traverse in order to connect $A$ and $B$. For example, $\overline{AB}$ is an edge of the polyhedron, then $d(A, B) = 1$, but if $\overline{AC}$ and $\overline{CB}$ are edges and $\overline{AB}$ is not an edge, then $d(A, B) = 2$. Let $Q$, $R$, and $S$ be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of $20$ equilateral triangles). What is the probability that $d(Q, R) > d(R, S)$?

$\textbf{(A) }\frac{7}{22}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{3}{8}\qquad\textbf{(D) }\frac{5}{12}\qquad\textbf{(E) }\frac{1}{2}$

Solution

See also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2022 AMC 10B Problems
Followed by
2023 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png