GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2016 AMC 10A Problems"

(Problem 11)
(re-added solutions links)
 
(29 intermediate revisions by 20 users not shown)
Line 1: Line 1:
 +
{{AMC10 Problems|year=2016|ab=A}}
 
==Problem 1==
 
==Problem 1==
<math>\dfrac{11!-10!}{9!}</math>?
+
What is the value of <math>\dfrac{11!-10!}{9!}</math>?
  
 
<math>\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132</math>
 
<math>\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132</math>
Line 7: Line 8:
  
 
==Problem 2==
 
==Problem 2==
<math>10^{x}\cdot 100^{2x}=1000^{5}</math>?
+
For what value <math>x</math> does <math>10^{x}\cdot 100^{2x}=1000^{5}</math>?
  
 
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5</math>
 
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5</math>
Line 14: Line 15:
  
 
==Problem 3==
 
==Problem 3==
 +
 
For every dollar Ben spent on bagels, David spent <math>25</math> cents less. Ben paid <math>$12.50</math> more than David. How much did they spend in the bagel store together?
 
For every dollar Ben spent on bagels, David spent <math>25</math> cents less. Ben paid <math>$12.50</math> more than David. How much did they spend in the bagel store together?
  
 
<math>\textbf{(A)}\ $37.50 \qquad\textbf{(B)}\ $50.00\qquad\textbf{(C)}\ $87.50\qquad\textbf{(D)}\ $90.00\qquad\textbf{(E)}\ $92.50</math>
 
<math>\textbf{(A)}\ $37.50 \qquad\textbf{(B)}\ $50.00\qquad\textbf{(C)}\ $87.50\qquad\textbf{(D)}\ $90.00\qquad\textbf{(E)}\ $92.50</math>
 +
  
 
[[2016 AMC 10A Problems/Problem 3|Solution]]
 
[[2016 AMC 10A Problems/Problem 3|Solution]]
  
 
==Problem 4==
 
==Problem 4==
The remainder can be defined for all real numbers <math>x</math> and <math>y</math> with <math>y \neq 0</math> by <cmath>\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor</cmath>where <math>\left \lfloor \tfrac{x}{y} \right \rfloor</math> denotes the greatest integer less than or equal to <math>\tfrac{x}{y}</math>. What is the value of <math>\text{rem} (\tfrac{3}{8}, -\tfrac{2}{5} )</math>?
+
The remainder can be defined for all real numbers <math>x</math> and <math>y</math> with <math>y \neq 0</math> by <cmath>\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor</cmath>where <math>\left \lfloor \dfrac{x}{y} \right \rfloor</math> denotes the greatest integer less than or equal to <math>\dfrac{x}{y}</math>. What is the value of <math>\text{rem}\left(\dfrac{3}{8}, -\dfrac{2}{5}\right)</math>?
  
 
<math>\textbf{(A) } -\frac{3}{8} \qquad \textbf{(B) } -\frac{1}{40} \qquad \textbf{(C) } 0 \qquad \textbf{(D) } \frac{3}{8} \qquad \textbf{(E) } \frac{31}{40}</math>
 
<math>\textbf{(A) } -\frac{3}{8} \qquad \textbf{(B) } -\frac{1}{40} \qquad \textbf{(C) } 0 \qquad \textbf{(D) } \frac{3}{8} \qquad \textbf{(E) } \frac{31}{40}</math>
Line 95: Line 98:
 
</asy>
 
</asy>
  
<cmath>\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 6 \qquad \textbf{(E) }8</cmath>
+
<math>\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 6 \qquad \textbf{(E) }8</math>
  
 
[[2016 AMC 10A Problems/Problem 10|Solution]]
 
[[2016 AMC 10A Problems/Problem 10|Solution]]
  
 
==Problem 11==
 
==Problem 11==
 +
Find the area of the shaded region.
 
<asy>
 
<asy>
  
Line 194: Line 198:
  
 
<math>\textbf{(A) } 7 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 20</math>
 
<math>\textbf{(A) } 7 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 20</math>
 
  
 
[[2016 AMC 10A Problems/Problem 19|Solution]]
 
[[2016 AMC 10A Problems/Problem 19|Solution]]
Line 207: Line 210:
 
Circles with centers <math>P, Q</math> and <math>R</math>, having radii <math>1, 2</math> and <math>3</math>, respectively, lie on the same side of line <math>l</math> and are tangent to <math>l</math> at <math>P', Q'</math> and <math>R'</math>, respectively, with <math>Q'</math> between <math>P'</math> and <math>R'</math>. The circle with center <math>Q</math> is externally tangent to each of the other two circles. What is the area of triangle <math>PQR</math>?
 
Circles with centers <math>P, Q</math> and <math>R</math>, having radii <math>1, 2</math> and <math>3</math>, respectively, lie on the same side of line <math>l</math> and are tangent to <math>l</math> at <math>P', Q'</math> and <math>R'</math>, respectively, with <math>Q'</math> between <math>P'</math> and <math>R'</math>. The circle with center <math>Q</math> is externally tangent to each of the other two circles. What is the area of triangle <math>PQR</math>?
  
<math>\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{\frac{2}{3}}\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{\frac{3}{2}}</math>
+
<math>\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{6}/3\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{6}/2</math>
  
 
[[2016 AMC 10A Problems/Problem 21|Solution]]
 
[[2016 AMC 10A Problems/Problem 21|Solution]]
 +
 
==Problem 22==
 
==Problem 22==
 
For some positive integer <math>n</math>, the number <math>110n^3</math> has <math>110</math> positive integer divisors, including <math>1</math> and the number <math>110n^3</math>. How many positive integer divisors does the number <math>81n^4</math> have?
 
For some positive integer <math>n</math>, the number <math>110n^3</math> has <math>110</math> positive integer divisors, including <math>1</math> and the number <math>110n^3</math>. How many positive integer divisors does the number <math>81n^4</math> have?
Line 230: Line 234:
  
 
[[2016 AMC 10A Problems/Problem 24|Solution]]
 
[[2016 AMC 10A Problems/Problem 24|Solution]]
 
  
 
==Problem 25==
 
==Problem 25==
Line 238: Line 241:
  
 
[[2016 AMC 10A Problems/Problem 25|Solution]]
 
[[2016 AMC 10A Problems/Problem 25|Solution]]
 +
 +
 +
==See Also==
 +
{{AMC10 box|year=2016|ab=A|before=[[2015 AMC 10B Problems]]|after=[[2016 AMC 10B Problems]]}}
 +
* [[AMC 10]]
 +
* [[AMC 10 Problems and Solutions]]
 +
* [[2016 AMC 10A]]
 +
* [[Mathematics competition resources]]

Latest revision as of 22:56, 28 August 2024

2016 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of $\dfrac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Solution

Problem 2

For what value $x$ does $10^{x}\cdot 100^{2x}=1000^{5}$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Problem 3

For every dollar Ben spent on bagels, David spent $25$ cents less. Ben paid $$12.50$ more than David. How much did they spend in the bagel store together?

$\textbf{(A)}\ $37.50 \qquad\textbf{(B)}\ $50.00\qquad\textbf{(C)}\ $87.50\qquad\textbf{(D)}\ $90.00\qquad\textbf{(E)}\ $92.50$


Solution

Problem 4

The remainder can be defined for all real numbers $x$ and $y$ with $y \neq 0$ by \[\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor\]where $\left \lfloor \dfrac{x}{y} \right \rfloor$ denotes the greatest integer less than or equal to $\dfrac{x}{y}$. What is the value of $\text{rem}\left(\dfrac{3}{8}, -\dfrac{2}{5}\right)$?

$\textbf{(A) } -\frac{3}{8} \qquad \textbf{(B) } -\frac{1}{40} \qquad \textbf{(C) } 0 \qquad \textbf{(D) } \frac{3}{8} \qquad \textbf{(E) } \frac{31}{40}$

Solution

Problem 5

A rectangular box has integer side lengths in the ratio $1: 3: 4$. Which of the following could be the volume of the box?

$\textbf{(A)}\ 48\qquad\textbf{(B)}\ 56\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 144$

Solution

Problem 6

Ximena lists the whole numbers $1$ through $30$ once. Emilio copies Ximena's numbers, replacing each occurrence of the digit $2$ by the digit $1$. Ximena adds her numbers and Emilio adds his numbers. How much larger is Ximena's sum than Emilio's?

$\textbf{(A)}\ 13\qquad\textbf{(B)}\ 26\qquad\textbf{(C)}\ 102\qquad\textbf{(D)}\ 103\qquad\textbf{(E)}\ 110$

Solution

Problem 7

The mean, median, and mode of the $7$ data values $60, 100, x, 40, 50, 200, 90$ are all equal to $x$. What is the value of $x$?

$\textbf{(A)}\ 50 \qquad\textbf{(B)}\ 60 \qquad\textbf{(C)}\ 75 \qquad\textbf{(D)}\ 90 \qquad\textbf{(E)}\ 100$

Solution

Problem 8

Trickster Rabbit agrees with Foolish Fox to double Fox's money every time Fox crosses the bridge by Rabbit's house, as long as Fox pays $40$ coins in toll to Rabbit after each crossing. The payment is made after the doubling, Fox is excited about his good fortune until he discovers that all his money is gone after crossing the bridge three times. How many coins did Fox have at the beginning?

$\textbf{(A)}\ 20 \qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 35\qquad\textbf{(D)}\ 40\qquad\textbf{(E)}\ 45$

Solution

Problem 9

A triangular array of $2016$ coins has $1$ coin in the first row, $2$ coins in the second row, $3$ coins in the third row, and so on up to $N$ coins in the $N$th row. What is the sum of the digits of $N$?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

Problem 10

A rug is made with three different colors as shown. The areas of the three differently colored regions form an arithmetic progression. The inner rectangle is one foot wide, and each of the two shaded regions is $1$ foot wide on all four sides. What is the length in feet of the inner rectangle? [asy] size(6cm); defaultpen(fontsize(9pt)); path rectangle(pair X, pair Y){ return X--(X.x,Y.y)--Y--(Y.x,X.y)--cycle; } filldraw(rectangle((0,0),(7,5)),gray(0.5)); filldraw(rectangle((1,1),(6,4)),gray(0.75)); filldraw(rectangle((2,2),(5,3)),white);  label("$1$",(0.5,2.5)); draw((0.3,2.5)--(0,2.5),EndArrow(TeXHead)); draw((0.7,2.5)--(1,2.5),EndArrow(TeXHead));  label("$1$",(1.5,2.5)); draw((1.3,2.5)--(1,2.5),EndArrow(TeXHead)); draw((1.7,2.5)--(2,2.5),EndArrow(TeXHead));  label("$1$",(4.5,2.5)); draw((4.5,2.7)--(4.5,3),EndArrow(TeXHead)); draw((4.5,2.3)--(4.5,2),EndArrow(TeXHead));  label("$1$",(4.1,1.5)); draw((4.1,1.7)--(4.1,2),EndArrow(TeXHead)); draw((4.1,1.3)--(4.1,1),EndArrow(TeXHead));  label("$1$",(3.7,0.5)); draw((3.7,0.7)--(3.7,1),EndArrow(TeXHead)); draw((3.7,0.3)--(3.7,0),EndArrow(TeXHead)); [/asy]

$\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 6 \qquad \textbf{(E) }8$

Solution

Problem 11

Find the area of the shaded region. [asy]  size(6cm); defaultpen(fontsize(9pt)); draw((0,0)--(8,0)--(8,5)--(0,5)--cycle); filldraw((7,0)--(8,0)--(8,1)--(0,4)--(0,5)--(1,5)--cycle,gray(0.8));  label("$1$",(1/2,5),dir(90)); label("$7$",(9/2,5),dir(90));  label("$1$",(8,1/2),dir(0)); label("$4$",(8,3),dir(0));  label("$1$",(15/2,0),dir(270)); label("$7$",(7/2,0),dir(270));  label("$1$",(0,9/2),dir(180)); label("$4$",(0,2),dir(180));  [/asy]

$\textbf{(A)}\ 4\dfrac{3}{5} \qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 5\dfrac{1}{4} \qquad \textbf{(D)}\ 6\dfrac{1}{2} \qquad \textbf{(E)}\ 8$

Solution

Problem 12

Three distinct integers are selected at random between $1$ and $2016$, inclusive. Which of the following is a correct statement about the probability $p$ that the product of the three integers is odd?

$\textbf{(A)}\ p<\dfrac{1}{8}\qquad\textbf{(B)}\ p=\dfrac{1}{8}\qquad\textbf{(C)}\ \dfrac{1}{8}<p<\dfrac{1}{3}\qquad\textbf{(D)}\ p=\dfrac{1}{3}\qquad\textbf{(E)}\ p>\dfrac{1}{3}$

Solution

Problem 13

Five friends sat in a movie theater in a row containing $5$ seats, numbered $1$ to $5$ from left to right. (The directions "left" and "right" are from the point of view of the people as they sit in the seats.) During the movie Ada went to the lobby to get some popcorn. When she returned, she found that Bea had moved two seats to the right, Ceci had moved one seat to the left, and Dee and Edie had switched seats, leaving an end seat for Ada. In which seat had Ada been sitting before she got up?

$\textbf{(A) }1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4\qquad \textbf{(E) } 5$

Solution

Problem 14

How many ways are there to write $2016$ as the sum of twos and threes, ignoring order? (For example, $1008\cdot 2 + 0\cdot 3$ and $402\cdot 2 + 404\cdot 3$ are two such ways.)

$\textbf{(A)}\ 236\qquad\textbf{(B)}\ 336\qquad\textbf{(C)}\ 337\qquad\textbf{(D)}\ 403\qquad\textbf{(E)}\ 672$

Solution

Problem 15

Seven cookies of radius $1$ inch are cut from a circle of cookie dough, as shown. Neighboring cookies are tangent, and all except the center cookie are tangent to the edge of the dough. The leftover scrap is reshaped to form another cookie of the same thickness. What is the radius in inches of the scrap cookie?

[asy] draw(circle((0,0),3)); draw(circle((0,0),1)); draw(circle((1,sqrt(3)),1)); draw(circle((-1,sqrt(3)),1));  draw(circle((-1,-sqrt(3)),1)); draw(circle((1,-sqrt(3)),1));  draw(circle((2,0),1)); draw(circle((-2,0),1)); [/asy]

$\textbf{(A) } \sqrt{2} \qquad \textbf{(B) } 1.5 \qquad \textbf{(C) } \sqrt{\pi} \qquad \textbf{(D) } \sqrt{2\pi} \qquad \textbf{(E) } \pi$

Solution

Problem 16

A triangle with vertices $A(0, 2)$, $B(-3, 2)$, and $C(-3, 0)$ is reflected about the $x$-axis, then the image $\triangle A'B'C'$ is rotated counterclockwise about the origin by $90^{\circ}$ to produce $\triangle A''B''C''$. Which of the following transformations will return $\triangle A''B''C''$ to $\triangle ABC$?

$\textbf{(A)}$ counterclockwise rotation about the origin by $90^{\circ}$.

$\textbf{(B)}$ clockwise rotation about the origin by $90^{\circ}$.

$\textbf{(C)}$ reflection about the $x$-axis

$\textbf{(D)}$ reflection about the line $y = x$

$\textbf{(E)}$ reflection about the $y$-axis.

Solution

Problem 17

Let $N$ be a positive multiple of $5$. One red ball and $N$ green balls are arranged in a line in random order. Let $P(N)$ be the probability that at least $\tfrac{3}{5}$ of the green balls are on the same side of the red ball. Observe that $P(5)=1$ and that $P(N)$ approaches $\tfrac{4}{5}$ as $N$ grows large. What is the sum of the digits of the least value of $N$ such that $P(N) < \tfrac{321}{400}$?

$\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) }16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20$

Solution

Problem 18

Each vertex of a cube is to be labeled with an integer $1$ through $8$, with each integer being used once, in such a way that the sum of the four numbers on the vertices of a face is the same for each face. Arrangements that can be obtained from each other through rotations of the cube are considered to be the same. How many different arrangements are possible?

$\textbf{(A) } 1\qquad\textbf{(B) } 3\qquad\textbf{(C) }6 \qquad\textbf{(D) }12 \qquad\textbf{(E) }24$

Solution

Problem 19

In rectangle $ABCD,$ $AB=6$ and $BC=3$. Point $E$ between $B$ and $C$, and point $F$ between $E$ and $C$ are such that $BE=EF=FC$. Segments $\overline{AE}$ and $\overline{AF}$ intersect $\overline{BD}$ at $P$ and $Q$, respectively. The ratio $BP:PQ:QD$ can be written as $r:s:t$ where the greatest common factor of $r,s$ and $t$ is 1. What is $r+s+t$?

$\textbf{(A) } 7 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 20$

Solution

Problem 20

For some particular value of $N$, when $(a+b+c+d+1)^N$ is expanded and like terms are combined, the resulting expression contains exactly $1001$ terms that include all four variables $a, b,c,$ and $d$, each to some positive power. What is $N$?

$\textbf{(A) }9 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 17 \qquad \textbf{(E) } 19$

Solution

Problem 21

Circles with centers $P, Q$ and $R$, having radii $1, 2$ and $3$, respectively, lie on the same side of line $l$ and are tangent to $l$ at $P', Q'$ and $R'$, respectively, with $Q'$ between $P'$ and $R'$. The circle with center $Q$ is externally tangent to each of the other two circles. What is the area of triangle $PQR$?

$\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{6}/3\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{6}/2$

Solution

Problem 22

For some positive integer $n$, the number $110n^3$ has $110$ positive integer divisors, including $1$ and the number $110n^3$. How many positive integer divisors does the number $81n^4$ have?

$\textbf{(A) }110\qquad\textbf{(B) }191\qquad\textbf{(C) }261\qquad\textbf{(D) }325\qquad\textbf{(E) }425$

Solution

Problem 23

A binary operation $\diamondsuit$ has the properties that $a\,\diamondsuit\, (b\,\diamondsuit \,c) = (a\,\diamondsuit \,b)\cdot c$ and that $a\,\diamondsuit \,a=1$ for all nonzero real numbers $a, b,$ and $c$. (Here $\cdot$ represents multiplication). The solution to the equation $2016 \,\diamondsuit\, (6\,\diamondsuit\, x)=100$ can be written as $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. What is $p+q?$

$\textbf{(A) }109\qquad\textbf{(B) }201\qquad\textbf{(C) }301\qquad\textbf{(D) }3049\qquad\textbf{(E) }33,601$

Solution

Problem 24

A quadrilateral is inscribed in a circle of radius $200\sqrt{2}$. Three of the sides of this quadrilateral have length $200$. What is the length of the fourth side?

$\textbf{(A) }200\qquad \textbf{(B) }200\sqrt{2}\qquad\textbf{(C) }200\sqrt{3}\qquad\textbf{(D) }300\sqrt{2}\qquad\textbf{(E) } 500$

Solution

Problem 25

How many ordered triples $(x,y,z)$ of positive integers satisfy $\text{lcm}(x,y) = 72, \text{lcm}(x,z) = 600$ and $\text{lcm}(y,z)=900$?

$\textbf{(A)}\ 15\qquad\textbf{(B)}\ 16\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 64$

Solution


See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2015 AMC 10B Problems
Followed by
2016 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions