Difference between revisions of "2023 AMC 12A Problems/Problem 3"

(Solution 5 (Under 10 seconds, ignore the first paragraph))
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{duplicate|[[2023 AMC 10A Problems/Problem 3|2023 AMC 10A #3]] and [[2023 AMC 12A Problems/Problem 3|2023 AMC 12A #3]]}}
 
{{duplicate|[[2023 AMC 10A Problems/Problem 3|2023 AMC 10A #3]] and [[2023 AMC 12A Problems/Problem 3|2023 AMC 12A #3]]}}
  
==Problem==
+
==Problem 3==
 
How many positive perfect squares less than <math>2023</math> are divisible by <math>5</math>?
 
How many positive perfect squares less than <math>2023</math> are divisible by <math>5</math>?
  
 
<math>\textbf{(A) } 8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) } 12</math>
 
<math>\textbf{(A) } 8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) } 12</math>
  
==Solution 2 (slightly refined)==
+
==Solution 1 (slightly refined)==
Since <math>\left \lfloor{\sqrt{2023}}\right \rfloor = 44</math>, there are <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math> perfect squares less than 2023.
+
Since <math>\left \lfloor{\sqrt{2023}}\right \rfloor = 44</math>, there are <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math> perfect squares less than 2023 that are divisible by 5.
  
~not_slay
+
~not_slay (edited a teeny bit by mihikamishra)
  
==Solution 3 ==
+
==Solution 2 ==
Since <math>5</math> is prime, each solution must be divisible by <math>5^2=25</math>. We take <math>\left \lfloor{\frac{2023}{25}}\right \rfloor = 80</math> and see that there are <math>\boxed{\textbf{(A) 8}}</math> positive perfect squares no greater than <math>80</math>.
+
Since <math>5</math> is square-free, each solution must be divisible by <math>5^2=25</math>. We take <math>\left \lfloor{\frac{2023}{25}}\right \rfloor = 80</math> and see that there are <math>\boxed{\textbf{(A) 8}}</math> positive perfect squares no greater than <math>80</math>.
  
 
~jwseph
 
~jwseph
  
==Solution 4==
+
==Solution 3 ==
 +
 
 +
Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can figure out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or  <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math> solutions.
  
~kyogrexu (minor edits by vadava_lx)
+
~BlueShardow
~ It was just a worse way of describing solution 5, hence removed by
 
~ Dextrik
 
  
==Solution 5 (Under 10 seconds, ignore the first paragraph)==
+
==Solution 4 ==
  
The original way of BlueShardow
+
The way of BlueShardow refined:
  
Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can fique out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or  <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math> solutions. PLEASE DO NOT do this problem this way, it takes way too much time.
+
All it takes is to recall that 45 squared is 2025, and 45 is 5 x 9. So all the squares of 5 x 1, 5 x 2, 5 x 3 so on are divisible by 5. So the answer is 8. It can be done even if one does not remember that 45 squared is 2025, all it takes is intuition. One can easily see mentally that 5 x 8 that is 40 squared is 1600, and then one has to do just one more computation and see that 5 x 9 that is 45 squared exceeds 2023, so the answer is 8.  
  
~BlueShardow
+
~edit by RobinDaBank
 +
 
 +
Note that you can find the square of any number that ends in 5 by taking the number 5 more than it and the number 5 less than it, multiplying those together, and adding 25. For example, to calculate the square of 45, you do 40 x 50 = 2000, and 2000 + 25 = 2025.
  
The way of BlueShardow refined:
+
~note by amadeus1011, edited by mihikamishra
  
All it takes is to recall that 45 squared is 2025, and 45 is 5 x 9. So all the squares of 5 x 1, 5 x 2, 5 x 3 so on are divisible by 5. So the answer is<math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math>. It can be done even if one does not remember that 45 squared is 2025, all it takes is intuition. One can easily see mentally that 5 x 8 that is 40 squared is 1600, and then one has to do just one more computation and see that 5 x 9 that is 45 squared exceeds 2023, so the answer is <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math>. BlueShardow's method is the best but he did not realize it.
+
==Video Solution by Math-X ==
 +
https://youtu.be/GP-DYudh5qU?si=rwUloGNfN7tcoG-8&t=502
  
~edit by RobinDaBank
 
  
==Video Solution (easy to understand) by Power Solve==
+
==Video Solution by Power Solve==
 
https://youtu.be/YXIH3UbLqK8?si=aIYHWEU82uUu21fQ&t=165
 
https://youtu.be/YXIH3UbLqK8?si=aIYHWEU82uUu21fQ&t=165
  
==Video Solution by Math-X (First understand the problem!!!)==
+
== Video Solution by CosineMethod ==
https://youtu.be/cMgngeSmFCY?si=E0a8wvcNRoeg2A3X&t=422
 
 
 
== Video Solution by CosineMethod [🔥Fast and Easy🔥]==
 
  
 
https://www.youtube.com/watch?v=wNH6O8D-7dY
 
https://www.youtube.com/watch?v=wNH6O8D-7dY
Line 53: Line 52:
  
  
==Video Solution (🚀 Just 2 min 🚀)==
+
==Video Solution ==
 
https://youtu.be/Z3fmCkuHG3c
 
https://youtu.be/Z3fmCkuHG3c
  
 
~Education, the Study of Everything
 
~Education, the Study of Everything
  
==Video Solution (easy to digest) by Power Solve==
+
==Video Solution by Power Solve==
 
https://www.youtube.com/watch?v=8huvzWTtgaU
 
https://www.youtube.com/watch?v=8huvzWTtgaU
  
==Video Solution (Easy to Understand) by DR.GOOGLE (YT: Pablo's Math)==
+
==Video Solution by Pablo's Math==
 
https://youtu.be/BNhRdnOu-jI
 
https://youtu.be/BNhRdnOu-jI
  

Revision as of 06:50, 6 September 2024

The following problem is from both the 2023 AMC 10A #3 and 2023 AMC 12A #3, so both problems redirect to this page.

Problem 3

How many positive perfect squares less than $2023$ are divisible by $5$?

$\textbf{(A) } 8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) } 12$

Solution 1 (slightly refined)

Since $\left \lfloor{\sqrt{2023}}\right \rfloor = 44$, there are $\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}$ perfect squares less than 2023 that are divisible by 5.

~not_slay (edited a teeny bit by mihikamishra)

Solution 2

Since $5$ is square-free, each solution must be divisible by $5^2=25$. We take $\left \lfloor{\frac{2023}{25}}\right \rfloor = 80$ and see that there are $\boxed{\textbf{(A) 8}}$ positive perfect squares no greater than $80$.

~jwseph

Solution 3

Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can figure out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or $\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}$ solutions.

~BlueShardow

Solution 4

The way of BlueShardow refined:

All it takes is to recall that 45 squared is 2025, and 45 is 5 x 9. So all the squares of 5 x 1, 5 x 2, 5 x 3 so on are divisible by 5. So the answer is 8. It can be done even if one does not remember that 45 squared is 2025, all it takes is intuition. One can easily see mentally that 5 x 8 that is 40 squared is 1600, and then one has to do just one more computation and see that 5 x 9 that is 45 squared exceeds 2023, so the answer is 8.

~edit by RobinDaBank

Note that you can find the square of any number that ends in 5 by taking the number 5 more than it and the number 5 less than it, multiplying those together, and adding 25. For example, to calculate the square of 45, you do 40 x 50 = 2000, and 2000 + 25 = 2025.

~note by amadeus1011, edited by mihikamishra

Video Solution by Math-X

https://youtu.be/GP-DYudh5qU?si=rwUloGNfN7tcoG-8&t=502


Video Solution by Power Solve

https://youtu.be/YXIH3UbLqK8?si=aIYHWEU82uUu21fQ&t=165

Video Solution by CosineMethod

https://www.youtube.com/watch?v=wNH6O8D-7dY

Video Solution

https://youtu.be/w7RBPIatRNE

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


Video Solution

https://youtu.be/Z3fmCkuHG3c

~Education, the Study of Everything

Video Solution by Power Solve

https://www.youtube.com/watch?v=8huvzWTtgaU

Video Solution by Pablo's Math

https://youtu.be/BNhRdnOu-jI

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png