Difference between revisions of "2000 AIME II Problems/Problem 1"
(→Solution) |
|||
(9 intermediate revisions by 5 users not shown) | |||
Line 24: | Line 24: | ||
Alternatively, we could've noted that, because <math>\frac 1{\log_a{b}} = \log_b{a}</math> | Alternatively, we could've noted that, because <math>\frac 1{\log_a{b}} = \log_b{a}</math> | ||
− | <cmath>\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}} = | + | <cmath> |
+ | \begin{align*} | ||
+ | \frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}} &= 2 \cdot \frac{1}{\log_4{2000^6}} + 3\cdot \frac {1}{\log_5{2000^6} }\\ | ||
+ | &=2{\log_{2000^6}{4}} + 3{\log_{2000^6}{5}} \\ | ||
+ | &={\log_{2000^6}{4^2}} + {\log_{2000^6}{5^3}}\\ | ||
+ | &={\log_{2000^6}{4^2 \cdot 5^3}}\\ | ||
+ | &={\log_{2000^6}{2000}}\\ | ||
+ | &= {\frac{1}{6}}.\end{align*}</cmath> | ||
− | < | + | Therefore our answer is <math>1 + 6 = \boxed{007}</math>. |
− | <cmath>{\ | + | == Solution 3 == |
+ | We know that <math>2 = \log_4{16}</math> and <math>3 = \log_5{125}</math>, and by base of change formula, <math>\log_a{b} = \frac{\log_c{b}}{\log_c{a}}</math>. Lastly, notice <math>\log a + \log b = \log ab</math> for all bases. | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}} = \log_{2000^6}{16} + \log_{2000^6}{125} = \log_{2000^6}{2000} = \frac16 \implies \boxed{007} \end{align*}</cmath> | ||
− | + | <math>\bold{Solution}</math> <math>\bold{written}</math> <math>\bold{by}</math> | |
+ | ~ <math>\bold{PaperMath}</math> | ||
+ | |||
+ | ===Solution 4=== | ||
+ | <cmath>\frac{2}{\log_4 2000^6} + \frac{3}{\log_5 2000^6}</cmath> <cmath>= \frac{1}{3\log_4 2000} + \frac{1}{2\log_5 2000}</cmath> <cmath>= \frac{1}{3} \log_{2000} 4 + \frac{1}{2} \log_{2000} 5</cmath> <cmath>= \log_{2000} (\sqrt[3]{4} \cdot \sqrt{5}) = x</cmath> <cmath>\implies 2^{4x} \cdot 5^{3x} = 2^{\frac{2}{3}} \cdot 5^{\frac{1}{2}}</cmath> <cmath>\implies 4x + (3\log_2 5)x = \frac{2}{3}+\frac{1}{2} \log_2 5</cmath> <cmath>\implies x = \frac{\frac{2}{3} + \frac{1}{2} \log_2 5}{4 + 3\log_2 5}</cmath> <cmath>\implies 6x = \frac{4 + 3\log_2 5}{4 + 3\log_2 5}</cmath> <cmath>\implies x = \frac{1}{6}</cmath> <cmath>\implies m + n = \boxed{007}</cmath> | ||
+ | |||
+ | ~ [https://artofproblemsolving.com/wiki/index.php/User:Cxsmi cxsmi] | ||
+ | |||
+ | == Video Solution by Pi Academy == | ||
+ | https://youtu.be/ucn9yfcu1QY?si=r3ebuzJNd2uAq0kV | ||
+ | |||
+ | ~ Pi Academy | ||
{{AIME box|year=2000|n=II|before=First Question|num-a=2}} | {{AIME box|year=2000|n=II|before=First Question|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 20:04, 9 October 2024
Contents
Problem
The number
can be written as where and are relatively prime positive integers. Find .
Solution
Solution 1
Therefore,
Solution 2
Alternatively, we could've noted that, because
Therefore our answer is .
Solution 3
We know that and , and by base of change formula, . Lastly, notice for all bases.
~
Solution 4
~ cxsmi
Video Solution by Pi Academy
https://youtu.be/ucn9yfcu1QY?si=r3ebuzJNd2uAq0kV
~ Pi Academy
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.