Difference between revisions of "2019 AIME II Problems/Problem 9"

(Created page with "Why are you on this page? You should be preparing for this contest, not wasting your time looking for the solutions!")
 
(Solution 3)
 
(15 intermediate revisions by 10 users not shown)
Line 1: Line 1:
Why are you on this page? You should be preparing for this contest, not wasting your time looking for the solutions!
+
==Problem==
 +
Call a positive integer <math>n</math> <math>k</math>-<i>pretty</i> if <math>n</math> has exactly <math>k</math> positive divisors and <math>n</math> is divisible by <math>k</math>. For example, <math>18</math> is <math>6</math>-pretty. Let <math>S</math> be the sum of positive integers less than <math>2019</math> that are <math>20</math>-pretty. Find <math>\tfrac{S}{20}</math>.
 +
 
 +
==Solution 1==
 +
Every 20-pretty integer can be written in form <math>n = 2^a 5^b k</math>, where <math>a \ge 2</math>, <math>b \ge 1</math>, <math>\gcd(k,10) = 1</math>, and <math>d(n) = 20</math>, where <math>d(n)</math> is the number of divisors of <math>n</math>. Thus, we have <math>20 = (a+1)(b+1)d(k)</math>, using the fact that the divisor function is multiplicative. As <math>(a+1)(b+1)</math> must be a divisor of 20, there are not many cases to check.
 +
 
 +
If <math>a+1 = 4</math>, then <math>b+1 = 5</math>. But this leads to no solutions, as <math>(a,b) = (3,4)</math> gives <math>2^3 5^4 > 2019</math>.
 +
 
 +
If <math>a+1 = 5</math>, then <math>b+1 = 2</math> or <math>4</math>. The first case gives <math>n = 2^4 \cdot 5^1 \cdot p</math> where <math>p</math> is a prime other than 2 or 5. Thus we have <math>80p < 2019 \implies p = 3, 7, 11, 13, 17, 19, 23</math>. The sum of all such <math>n</math> is <math>80(3+7+11+13+17+19+23) = 7440</math>. In the second case <math>b+1 = 4</math> and <math>d(k) = 1</math>, and there is one solution <math>n = 2^4 \cdot 5^3 = 2000</math>.
 +
 
 +
If <math>a+1 = 10</math>, then <math>b+1 = 2</math>, but this gives <math>2^9 \cdot 5^1 > 2019</math>. No other values for <math>a+1</math> work.
 +
 
 +
Then we have <math>\frac{S}{20} = \frac{80(3+7+11+13+17+19+23) + 2000}{20} = 372 + 100 = \boxed{472}</math>.
 +
 
 +
-scrabbler94
 +
 
 +
==Solution 2==
 +
For <math>n</math> to have exactly <math>20</math> positive divisors, <math>n</math> can only take on certain prime factorization forms: namely, <math>p^{19}, p^9q, p^4q^3, p^4qr</math> where <math>p,q,r</math> are primes. No number that is a multiple of <math>20</math> can be expressed in the first form because 20 has ''two'' primes in its prime factorization, while the first form has only ''one'', and the only integer divisible by <math>20</math> that has the second form is <math>2^{9}5</math>, which is 2560, greater than <math>2019</math>.
 +
 
 +
For the third form, the only <math>20</math>-pretty numbers are <math>2^45^3=2000</math> and <math>2^35^4=5000</math>, and only <math>2000</math> is small enough.
 +
 
 +
For the fourth form, any number of the form <math>2^45r</math> where <math>r</math> is a prime other than <math>2</math> or <math>5</math> will satisfy the <math>20</math>-pretty requirement. Since <math>n=80r<2019</math>, <math>r\le 25</math>. Therefore, <math>r</math> can take on <math>3, 7, 11, 13, 17, 19,</math> or <math>23</math>.
 +
 
 +
Thus, <math>\frac{S}{20}=\frac{2000+80(3+7+11+...+23)}{20}=100+4(3+7+11+...+23)=\boxed{472}</math>.
 +
 
 +
Rephrased for clarity by Afly
 +
 
 +
==See Also==
 +
{{AIME box|year=2019|n=II|num-b=8|num-a=10}}
 +
[[Category: Intermediate Number Theory Problems]]
 +
{{MAA Notice}}

Latest revision as of 00:38, 22 December 2024

Problem

Call a positive integer $n$ $k$-pretty if $n$ has exactly $k$ positive divisors and $n$ is divisible by $k$. For example, $18$ is $6$-pretty. Let $S$ be the sum of positive integers less than $2019$ that are $20$-pretty. Find $\tfrac{S}{20}$.

Solution 1

Every 20-pretty integer can be written in form $n = 2^a 5^b k$, where $a \ge 2$, $b \ge 1$, $\gcd(k,10) = 1$, and $d(n) = 20$, where $d(n)$ is the number of divisors of $n$. Thus, we have $20 = (a+1)(b+1)d(k)$, using the fact that the divisor function is multiplicative. As $(a+1)(b+1)$ must be a divisor of 20, there are not many cases to check.

If $a+1 = 4$, then $b+1 = 5$. But this leads to no solutions, as $(a,b) = (3,4)$ gives $2^3 5^4 > 2019$.

If $a+1 = 5$, then $b+1 = 2$ or $4$. The first case gives $n = 2^4 \cdot 5^1 \cdot p$ where $p$ is a prime other than 2 or 5. Thus we have $80p < 2019 \implies p = 3, 7, 11, 13, 17, 19, 23$. The sum of all such $n$ is $80(3+7+11+13+17+19+23) = 7440$. In the second case $b+1 = 4$ and $d(k) = 1$, and there is one solution $n = 2^4 \cdot 5^3 = 2000$.

If $a+1 = 10$, then $b+1 = 2$, but this gives $2^9 \cdot 5^1 > 2019$. No other values for $a+1$ work.

Then we have $\frac{S}{20} = \frac{80(3+7+11+13+17+19+23) + 2000}{20} = 372 + 100 = \boxed{472}$.

-scrabbler94

Solution 2

For $n$ to have exactly $20$ positive divisors, $n$ can only take on certain prime factorization forms: namely, $p^{19}, p^9q, p^4q^3, p^4qr$ where $p,q,r$ are primes. No number that is a multiple of $20$ can be expressed in the first form because 20 has two primes in its prime factorization, while the first form has only one, and the only integer divisible by $20$ that has the second form is $2^{9}5$, which is 2560, greater than $2019$.

For the third form, the only $20$-pretty numbers are $2^45^3=2000$ and $2^35^4=5000$, and only $2000$ is small enough.

For the fourth form, any number of the form $2^45r$ where $r$ is a prime other than $2$ or $5$ will satisfy the $20$-pretty requirement. Since $n=80r<2019$, $r\le 25$. Therefore, $r$ can take on $3, 7, 11, 13, 17, 19,$ or $23$.

Thus, $\frac{S}{20}=\frac{2000+80(3+7+11+...+23)}{20}=100+4(3+7+11+...+23)=\boxed{472}$.

Rephrased for clarity by Afly

See Also

2019 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png