Difference between revisions of "2000 AIME II Problems/Problem 10"
(→See also) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | A circle is | + | A [[circle]] is [[inscribe]]d in [[quadrilateral]] <math>ABCD</math>, [[tangent]] to <math>\overline{AB}</math> at <math>P</math> and to <math>\overline{CD}</math> at <math>Q</math>. Given that <math>AP=19</math>, <math>PB=26</math>, <math>CQ=37</math>, and <math>QD=23</math>, find the [[square]] of the [[radius]] of the circle. |
== Solution == | == Solution == | ||
− | Call the center of the circle <math>O</math>. By drawing the lines from <math>O</math> tangent to the sides and from <math>O</math> to the vertices of the quadrilateral, eight congruent right | + | Call the [[center]] of the circle <math>O</math>. By drawing the lines from <math>O</math> tangent to the sides and from <math>O</math> to the vertices of the quadrilateral, eight congruent [[right triangle]]s are formed. |
Thus, <math>\angle{AOP}+\angle{POB}+\angle{COQ}+\angle{QOD}=180</math>, or <math>(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=180</math>. | Thus, <math>\angle{AOP}+\angle{POB}+\angle{COQ}+\angle{QOD}=180</math>, or <math>(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=180</math>. |
Revision as of 08:10, 20 March 2008
Problem
A circle is inscribed in quadrilateral , tangent to at and to at . Given that , , , and , find the square of the radius of the circle.
Solution
Call the center of the circle . By drawing the lines from tangent to the sides and from to the vertices of the quadrilateral, eight congruent right triangles are formed.
Thus, , or .
Take the of both sides and use the identity for to get .
Use the identity for again to get .
Solving gives .
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |