Difference between revisions of "1983 AIME Problems/Problem 15"
QuincyCello (talk | contribs) m (→Solution) |
(→Solution) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | Let <math>A</math> be any [[fixed point]] on [[circle]] <math>O</math> and let <math>AD</math> be a [[chord]] of circle <math>O</math>. The [[locus]] of [[midpoint]]s <math>N</math> of the chord <math>AD</math> is a circle <math>P</math>, with diameter <math> | + | Let <math>A</math> be any [[fixed point]] on [[circle]] <math>O</math> and let <math>AD</math> be a [[chord]] of circle <math>O</math>. The [[locus]] of [[midpoint]]s <math>N</math> of the chord <math>AD</math> is a circle <math>P</math>, with diameter <math>AO</math>. Generally, the circle <math>P</math> can intersect the chord <math>BC</math> at two points, one point, or they may not have a point of intersection. By the problem condition, however, the circle <math>P</math> is tangent to BC at point N. |
Let M be the midpoint of the chord <math>BC</math> such that <math>BM=3</math>. From [[right triangle]] <math>OMB</math>, <math>OM = \sqrt{OB^2 - BM^2} =4</math>. Thus, <math>\tan \angle BOM = \frac{BM}{OM} = \frac 3 4</math>. | Let M be the midpoint of the chord <math>BC</math> such that <math>BM=3</math>. From [[right triangle]] <math>OMB</math>, <math>OM = \sqrt{OB^2 - BM^2} =4</math>. Thus, <math>\tan \angle BOM = \frac{BM}{OM} = \frac 3 4</math>. |
Revision as of 19:06, 9 June 2009
Problem
The adjoining figure shows two intersecting chords in a circle, with on minor arc . Suppose that the radius of the circle is , that , and that is bisected by . Suppose further that is the only chord starting at which is bisected by . It follows that the sine of the minor arc is a rational number. If this fraction is expressed as a fraction in lowest terms, what is the product ?
Solution
Let be any fixed point on circle and let be a chord of circle . The locus of midpoints of the chord is a circle , with diameter . Generally, the circle can intersect the chord at two points, one point, or they may not have a point of intersection. By the problem condition, however, the circle is tangent to BC at point N.
Let M be the midpoint of the chord such that . From right triangle , . Thus, .
Notice that the distance equals (Where is the radius of circle P). Evaluating this, . From , we see that
Next, notice that . We can therefore apply the tangent subtraction formula to obtain , . It follows that , resulting in an answer of .
See also
1983 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |