Difference between revisions of "2010 AIME II Problems/Problem 12"

m (Created page with '== Problem 12 == Two noncongruent integer-sided isosceles triangles have the same perimeter and the same area. The ratio of the lengths of the bases of the two triangles is <math…')
 
m (Solution)
Line 15: Line 15:
  
 
<center>
 
<center>
<math>\begin{array}{ccc}
+
<math>\begin{array}{cccc}
 
2a+14c&=&2b+16c\
 
2a+14c&=&2b+16c\
 
a+7c&=&b+8c\
 
a+7c&=&b+8c\
Line 40: Line 40:
  
 
Perimeter <math>=2a+14c=2(223)+14(15)=\boxed{676}</math>
 
Perimeter <math>=2a+14c=2(223)+14(15)=\boxed{676}</math>
 
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2010|num-b=11|num-a=13|n=II}}
 
{{AIME box|year=2010|num-b=11|num-a=13|n=II}}

Revision as of 20:28, 3 April 2010

Problem 12

Two noncongruent integer-sided isosceles triangles have the same perimeter and the same area. The ratio of the lengths of the bases of the two triangles is $8: 7$. Find the minimum possible value of their common perimeter.


Solution

Let the first triangle has side lengths $a$, $a$, $14c$,

and the second triangle has side lengths $b$, $b$, $16c$,

where $a, b, 2c \in \mathbb{Z}$.


Equal perimeter: $2a+14c=2b+16c \rightarrow a+7c=b+8c \rightarrow c=a-b$

$\begin{array}{cccc} 2a+14c&=&2b+16c\\ a+7c&=&b+8c\\ c&=&a-b\\ \end{array}$


Equal Area:

$Extra close brace or missing open brace$ (Error compiling LaTeX. Unknown error_msg)

Since $a$ and $b$ are integer, the minimum occurs when $a=223$, $b-218$, and $c=15$

Perimeter $=2a+14c=2(223)+14(15)=\boxed{676}$

See also

2010 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions