GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2005 AMC 10B Problems"

(Undo revision 40054 by Joshxiong (talk))
Line 57: Line 57:
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
An <math> 8</math>-foot by <math> 10</math>-foot floor is tiled with square tiles of size <math> 1</math> foot by <math> 1</math> foot. Each tile has a pattern consisting of four white quarter circles of radius <math> 1/2</math> foot centered at each corner of the tile. The remaining portion of the tile is shaded. How many square feet of the floor are shaded?
 +
<asy>unitsize(2cm);
 +
defaultpen(linewidth(.8pt));
 +
 +
fill(unitsquare,gray);
 +
filldraw(Arc((0,0),.5,0,90)--(0,0)--cycle,white,black);
 +
filldraw(Arc((1,0),.5,90,180)--(1,0)--cycle,white,black);
 +
filldraw(Arc((1,1),.5,180,270)--(1,1)--cycle,white,black);
 +
filldraw(Arc((0,1),.5,270,360)--(0,1)--cycle,white,black);</asy><math> \textrm{(A)}\ 80-20\pi \qquad
 +
\textrm{(B)}\ 60-10\pi \qquad
 +
\textrm{(C)}\ 80-10\pi \qquad
 +
\textrm{(D)}\ 60+10\pi \qquad
 +
\textrm{(E)}\ 80+10\pi</math>
  
 
[[2005 AMC 10B Problems/Problem 8|Solution]]
 
[[2005 AMC 10B Problems/Problem 8|Solution]]
Line 100: Line 113:
  
 
== Problem 14 ==
 
== Problem 14 ==
 +
Equilateral <math> \triangle ABC</math> has side length <math> 2</math>, <math> M</math> is the midpoint of <math> \overline{AC}</math>, and <math> C</math> is the midpoint of <math> \overline{BD}</math>. What is the area of <math> \triangle CDM</math>?
 +
<asy>defaultpen(linewidth(.8pt)+fontsize(8pt));
 +
 +
pair B = (0,0);
 +
pair A = 2*dir(60);
 +
pair C = (2,0);
 +
pair D = (4,0);
 +
pair M = midpoint(A--C);
 +
 +
label("$A$",A,NW);label("$B$",B,SW);label("$C$",C, SE);label("$M$",M,NE);label("$D$",D,SE);
 +
 +
draw(A--B--C--cycle);
 +
draw(C--D--M--cycle);</asy><math> \textrm{(A)}\ \frac {\sqrt {2}}{2}\qquad \textrm{(B)}\ \frac {3}{4}\qquad \textrm{(C)}\ \frac {\sqrt {3}}{2}\qquad \textrm{(D)}\ 1\qquad \textrm{(E)}\ \sqrt {2}</math>
  
 
[[2005 AMC 10B Problems/Problem 14|Solution]]
 
[[2005 AMC 10B Problems/Problem 14|Solution]]
Line 105: Line 131:
 
== Problem 15 ==
 
== Problem 15 ==
  
An envelope contains eight bills: <math>2</math> ones, <math>2</math> fives, <math>2</math> tens, and <math>2</math> twenties. Two bills are drawn at random without replacement. What is the probability that their sum is <math>&#36;</math>20<math> or more?
+
An envelope contains eight bills: <math>2</math> ones, <math>2</math> fives, <math>2</math> tens, and <math>2</math> twenties. Two bills are drawn at random without replacement. What is the probability that their sum is 36;<math>20</math> or more?
  
</math>\mathrm{(A)} \frac{1}{4} \qquad \mathrm{(B)} \frac{2}{5} \qquad \mathrm{(C)} \frac{3}{7} \qquad \mathrm{(D)} \frac{1}{2} \qquad \mathrm{(E)} \frac{2}{3} <math>
+
<math>\mathrm{(A)} \frac{1}{4} \qquad \mathrm{(B)} \frac{2}{5} \qquad \mathrm{(C)} \frac{3}{7} \qquad \mathrm{(D)} \frac{1}{2} \qquad \mathrm{(E)} \frac{2}{3} </math>
  
 
[[2005 AMC 10B Problems/Problem 15|Solution]]
 
[[2005 AMC 10B Problems/Problem 15|Solution]]
Line 113: Line 139:
 
== Problem 16 ==
 
== Problem 16 ==
  
The quadratic equation </math>x^2 + mx + n = 0<math> has roots that are twice those of </math>x^2 + px + m = 0<math>, and none of </math>m<math>, </math>n<math>, and </math>p<math> is zero. What is the value of </math>n/p<math>?
+
The quadratic equation <math>x^2 + mx + n = 0</math> has roots that are twice those of <math>x^2 + px + m = 0</math>, and none of <math>m</math>, <math>n</math>, and <math>p</math> is zero. What is the value of <math>n/p</math>?
  
</math>\mathrm{(A)} 1 \qquad \mathrm{(B)} 2 \qquad \mathrm{(C)} 4 \qquad \mathrm{(D)} 8 \qquad \mathrm{(E)} 16 <math>
+
<math>\mathrm{(A)} 1 \qquad \mathrm{(B)} 2 \qquad \mathrm{(C)} 4 \qquad \mathrm{(D)} 8 \qquad \mathrm{(E)} 16 </math>
  
 
[[2005 AMC 10B Problems/Problem 16|Solution]]
 
[[2005 AMC 10B Problems/Problem 16|Solution]]
Line 121: Line 147:
 
== Problem 17 ==
 
== Problem 17 ==
  
Suppose that </math>4^a = 5<math>, </math>5^b = 6<math>, </math>6^c = 7<math>, and </math>7^d = 8<math>. What is </math>a * b * c * d<math>?
+
Suppose that <math>4^a = 5</math>, <math>5^b = 6</math>, <math>6^c = 7</math>, and <math>7^d = 8</math>. What is <math>a * b * c * d</math>?
  
</math>\mathrm{(A)} 1 \qquad \mathrm{(B)} \frac{3}{2} \qquad \mathrm{(C)} 2 \qquad \mathrm{(D)} \frac{5}{2} \qquad \mathrm{(E)} 3 <math>
+
<math>\mathrm{(A)} 1 \qquad \mathrm{(B)} \frac{3}{2} \qquad \mathrm{(C)} 2 \qquad \mathrm{(D)} \frac{5}{2} \qquad \mathrm{(E)} 3 </math>
  
 
[[2005 AMC 10B Problems/Problem 17|Solution]]
 
[[2005 AMC 10B Problems/Problem 17|Solution]]
Line 129: Line 155:
 
== Problem 18 ==
 
== Problem 18 ==
  
All of David's telephone numbers have the form </math>555-abc-defg<math>, where </math>a<math>, </math>b<math>, </math>c<math>, </math>d<math>, </math>e<math>, </math>f<math>, and </math>g<math> are distinct digits and in increasing order, and none is either </math>0<math> or </math>1<math>. How many different telephone numbers can David have?
+
All of David's telephone numbers have the form <math>555-abc-defg</math>, where <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math>, <math>e</math>, <math>f</math>, and <math>g</math> are distinct digits and in increasing order, and none is either <math>0</math> or <math>1</math>. How many different telephone numbers can David have?
  
</math>\mathrm{(A)} 1 \qquad \mathrm{(B)} 2 \qquad \mathrm{(C)} 7 \qquad \mathrm{(D)} 8 \qquad \mathrm{(E)} 9 <math>
+
<math>\mathrm{(A)} 1 \qquad \mathrm{(B)} 2 \qquad \mathrm{(C)} 7 \qquad \mathrm{(D)} 8 \qquad \mathrm{(E)} 9 </math>
  
 
[[2005 AMC 10B Problems/Problem 18|Solution]]
 
[[2005 AMC 10B Problems/Problem 18|Solution]]
Line 137: Line 163:
 
== Problem 19 ==
 
== Problem 19 ==
  
On a certain math exam, </math>10\%<math> of the students got </math>70<math> points, </math>25\%<math> got </math>80<math> points, </math>20\%<math> got </math>85<math> points, </math>15\%<math> got </math>90<math> points, and the rest got </math>95<math> points. What is the difference between the mean and the median score on this exam?
+
On a certain math exam, <math>10\%</math> of the students got <math>70</math> points, <math>25\%</math> got <math>80</math> points, <math>20\%</math> got <math>85</math> points, <math>15\%</math> got <math>90</math> points, and the rest got <math>95</math> points. What is the difference between the mean and the median score on this exam?
  
</math>\mathrm{(A)} 0 \qquad \mathrm{(B)} 1 \qquad \mathrm{(C)} 2 \qquad \mathrm{(D)} 4 \qquad \mathrm{(E)} 5 <math>
+
<math>\mathrm{(A)} 0 \qquad \mathrm{(B)} 1 \qquad \mathrm{(C)} 2 \qquad \mathrm{(D)} 4 \qquad \mathrm{(E)} 5 </math>
  
 
[[2005 AMC 10B Problems/Problem 19|Solution]]
 
[[2005 AMC 10B Problems/Problem 19|Solution]]
Line 145: Line 171:
 
== Problem 20 ==
 
== Problem 20 ==
  
What is the average (mean) of all </math>5<math>-digit numbers that can be formed by using each of the digits </math>1<math>, </math>3<math>, </math>5<math>, </math>7<math>, and </math>8<math> exactly once?
+
What is the average (mean) of all <math>5</math>-digit numbers that can be formed by using each of the digits <math>1</math>, <math>3</math>, <math>5</math>, <math>7</math>, and <math>8</math> exactly once?
  
</math>\mathrm{(A)} 48000 \qquad \mathrm{(B)} 49999.5 \qquad \mathrm{(C)} 53332.8 \qquad \mathrm{(D)} 55555 \qquad \mathrm{(E)} 56432.8 <math>
+
<math>\mathrm{(A)} 48000 \qquad \mathrm{(B)} 49999.5 \qquad \mathrm{(C)} 53332.8 \qquad \mathrm{(D)} 55555 \qquad \mathrm{(E)} 56432.8 </math>
  
 
[[2005 AMC 10B Problems/Problem 20|Solution]]
 
[[2005 AMC 10B Problems/Problem 20|Solution]]
Line 153: Line 179:
 
== Problem 21 ==
 
== Problem 21 ==
  
Forty slips are placed into a hat, each bearing a number </math>1<math>, </math>2<math>, </math>3<math>, </math>4<math>, </math>5<math>, </math>6<math>, </math>7<math>, </math>8<math>, </math>9<math>, or </math>10<math>, with each number entered on four slips. Four slips are drawn from the hat at random and without replacement. Let </math>p<math> be the probability that all four slips bear the same number. Let </math>q<math> be the probability that two of the slips bear a number </math>a<math> and the other two bear a number </math>b \neq a<math>. What is the value of </math>q/p<math>?
+
Forty slips are placed into a hat, each bearing a number <math>1</math>, <math>2</math>, <math>3</math>, <math>4</math>, <math>5</math>, <math>6</math>, <math>7</math>, <math>8</math>, <math>9</math>, or <math>10</math>, with each number entered on four slips. Four slips are drawn from the hat at random and without replacement. Let <math>p</math> be the probability that all four slips bear the same number. Let <math>q</math> be the probability that two of the slips bear a number <math>a</math> and the other two bear a number <math>b \neq a</math>. What is the value of <math>q/p</math>?
  
</math>\mathrm{(A)} 162 \qquad \mathrm{(B)} 180 \qquad \mathrm{(C)} 324 \qquad \mathrm{(D)} 360 \qquad \mathrm{(E)} 720 <math>
+
<math>\mathrm{(A)} 162 \qquad \mathrm{(B)} 180 \qquad \mathrm{(C)} 324 \qquad \mathrm{(D)} 360 \qquad \mathrm{(E)} 720 </math>
  
 
[[2005 AMC 10B Problems/Problem 21|Solution]]
 
[[2005 AMC 10B Problems/Problem 21|Solution]]
Line 161: Line 187:
 
== Problem 22 ==
 
== Problem 22 ==
  
For how many positive integers </math>n<math> less than or equal to </math>24<math> is </math>n!<math> evenly divisible by </math>1 + 2 + \ldots + n<math>?
+
For how many positive integers <math>n</math> less than or equal to <math>24</math> is <math>n!</math> evenly divisible by <math>1 + 2 + \ldots + n</math>?
  
</math>\mathrm{(A)} 8 \qquad \mathrm{(B)} 12 \qquad \mathrm{(C)} 16 \qquad \mathrm{(D)} 17 \qquad \mathrm{(E)} 21 <math>
+
<math>\mathrm{(A)} 8 \qquad \mathrm{(B)} 12 \qquad \mathrm{(C)} 16 \qquad \mathrm{(D)} 17 \qquad \mathrm{(E)} 21 </math>
  
 
[[2005 AMC 10B Problems/Problem 22|Solution]]
 
[[2005 AMC 10B Problems/Problem 22|Solution]]
Line 169: Line 195:
 
== Problem 23 ==
 
== Problem 23 ==
  
In trapezoid </math>ABCD<math> we have </math>\overline{AB}<math> parallel to </math>\overline{DC}<math>, </math>E<math> as the midpoint of </math>\overline{BC}<math>, and </math>F<math> as the midpoint of </math>\overline{DA}<math>. The area of </math>ABEF<math> is twice the area of </math>FECD<math>. What is </math>AB/DC<math>?
+
In trapezoid <math>ABCD</math> we have <math>\overline{AB}</math> parallel to <math>\overline{DC}</math>, <math>E</math> as the midpoint of <math>\overline{BC}</math>, and <math>F</math> as the midpoint of <math>\overline{DA}</math>. The area of <math>ABEF</math> is twice the area of <math>FECD</math>. What is <math>AB/DC</math>?
  
</math>\mathrm{(A)} 2 \qquad \mathrm{(B)} 3 \qquad \mathrm{(C)} 5 \qquad \mathrm{(D)} 6 \qquad \mathrm{(E)} 8 <math>
+
<math>\mathrm{(A)} 2 \qquad \mathrm{(B)} 3 \qquad \mathrm{(C)} 5 \qquad \mathrm{(D)} 6 \qquad \mathrm{(E)} 8 </math>
  
 
[[2005 AMC 10B Problems/Problem 23|Solution]]
 
[[2005 AMC 10B Problems/Problem 23|Solution]]
Line 177: Line 203:
 
== Problem 24 ==
 
== Problem 24 ==
  
Let </math>x<math> and </math>y<math> be two-digit integers such that </math>y<math> is obtained by reversing the digits
+
Let <math>x</math> and <math>y</math> be two-digit integers such that <math>y</math> is obtained by reversing the digits
of </math>x<math>. The integers </math>x<math> and </math>y<math> satisfy </math>x^2 - y^2 = m^2<math> for some positive integer </math>m<math>.
+
of <math>x</math>. The integers <math>x</math> and <math>y</math> satisfy <math>x^2 - y^2 = m^2</math> for some positive integer <math>m</math>.
What is </math>x + y + m<math>?
+
What is <math>x + y + m</math>?
  
</math>\mathrm{(A)} 88 \qquad \mathrm{(B)} 112 \qquad \mathrm{(C)} 116 \qquad \mathrm{(D)} 144 \qquad \mathrm{(E)} 154 <math>
+
<math>\mathrm{(A)} 88 \qquad \mathrm{(B)} 112 \qquad \mathrm{(C)} 116 \qquad \mathrm{(D)} 144 \qquad \mathrm{(E)} 154 </math>
  
 
[[2005 AMC 10B Problems/Problem 24|Solution]]
 
[[2005 AMC 10B Problems/Problem 24|Solution]]
Line 187: Line 213:
 
== Problem 25 ==
 
== Problem 25 ==
  
A subset </math>B<math> of the set of integers from </math>1<math> to </math>100<math>, inclusive, has the property that no two elements of </math>B<math> sum to </math>125<math>. What is the maximum possible number of elements in </math>B<math>?
+
A subset <math>B</math> of the set of integers from <math>1</math> to <math>100</math>, inclusive, has the property that no two elements of <math>B</math> sum to <math>125</math>. What is the maximum possible number of elements in <math>B</math>?
  
</math>\mathrm{(A)} 50 \qquad \mathrm{(B)} 51 \qquad \mathrm{(C)} 62 \qquad \mathrm{(D)} 65 \qquad \mathrm{(E)} 68 $
+
<math>\mathrm{(A)} 50 \qquad \mathrm{(B)} 51 \qquad \mathrm{(C)} 62 \qquad \mathrm{(D)} 65 \qquad \mathrm{(E)} 68 </math>
  
 
[[2005 AMC 10B Problems/Problem 25|Solution]]
 
[[2005 AMC 10B Problems/Problem 25|Solution]]

Revision as of 10:19, 29 June 2011

Problem 1

A scout troop buys $1000$ candy bars at a price of five for $$2$. They sell all the candy bars at a price of two for $$1$. What was the profit, in dollars?

$\mathrm{(A)} 100 \qquad \mathrm{(B)} 200 \qquad \mathrm{(C)} 300 \qquad \mathrm{(D)} 400 \qquad \mathrm{(E)} 500$

Solution

Problem 2

A positive number $x$ has the property that $x\%$ of $x$ is $4$. What is $x$?

$\mathrm{(A)} 2 \qquad \mathrm{(B)} 4 \qquad \mathrm{(C)} 10 \qquad \mathrm{(D)} 20 \qquad \mathrm{(E)} 40$

Solution

Problem 3

A gallon of paint is used to paint a room. One third of the paint is used on the first day. On the second day, one third of the remaining paint is used. What fraction of the original amount of paint is available to use on the third day?

$\mathrm{(A)} \frac{1}{10} \qquad \mathrm{(B)} \frac{1}{9} \qquad \mathrm{(C)} \frac{1}{3} \qquad \mathrm{(D)} \frac{4}{9} \qquad \mathrm{(E)} \frac{5}{9}$

Solution

Problem 4

For real numbers $a$ and $b$, define $a \diamond b = \sqrt{a^2 + b^2}$. What is the value of

$(5 \diamond 12) \diamond ((-12) \diamond (-5))$?

$\mathrm{(A)} 0 \qquad \mathrm{(B)} \frac{17}{2} \qquad \mathrm{(C)} 13 \qquad \mathrm{(D)} 13\sqrt{2} \qquad \mathrm{(E)} 26$

Solution

Problem 5

Brianna is using part of the money she earned on her weekend job to buy several equally-priced CDs. She used one fifth of her money to buy one third of the CDs. What fraction of her money will she have left after she buys all the CDs?

$\mathrm{(A)} \frac{1}{5} \qquad \mathrm{(B)} \frac{1}{3} \qquad \mathrm{(C)} \frac{2}{5} \qquad \mathrm{(D)} \frac{2}{3} \qquad \mathrm{(E)} \frac{4}{5}$

Solution

Problem 6

At the beginning of the school year, Lisa's goal was to earn an A on at least $80\%$ of her $50$ quizzes for the year. She earned an A on $22$ of the first $30$ quizzes. If she is to achieve her goal, on at most how many of the remaining quizzes can she earn a grade lower than an A?

$\mathrm{(A)} 1 \qquad \mathrm{(B)} 2 \qquad \mathrm{(C)} 3 \qquad \mathrm{(D)} 4 \qquad \mathrm{(E)} 5$

Solution

Problem 7

A circle is inscribed in a square, then a square is inscribed in this circle, and finally, a circle is inscribed in this square. What is the ratio of the area of the smaller circle to the area of the larger square?

$\mathrm{(A)} \frac{\pi}{16} \qquad \mathrm{(B)} \frac{\pi}{8} \qquad \mathrm{(C)} \frac{3\pi}{16} \qquad \mathrm{(D)} \frac{\pi}{4} \qquad \mathrm{(E)} \frac{\pi}{2}$

Solution

Problem 8

An $8$-foot by $10$-foot floor is tiled with square tiles of size $1$ foot by $1$ foot. Each tile has a pattern consisting of four white quarter circles of radius $1/2$ foot centered at each corner of the tile. The remaining portion of the tile is shaded. How many square feet of the floor are shaded? [asy]unitsize(2cm); defaultpen(linewidth(.8pt));  fill(unitsquare,gray); filldraw(Arc((0,0),.5,0,90)--(0,0)--cycle,white,black); filldraw(Arc((1,0),.5,90,180)--(1,0)--cycle,white,black); filldraw(Arc((1,1),.5,180,270)--(1,1)--cycle,white,black); filldraw(Arc((0,1),.5,270,360)--(0,1)--cycle,white,black);[/asy]$\textrm{(A)}\ 80-20\pi \qquad \textrm{(B)}\ 60-10\pi \qquad \textrm{(C)}\ 80-10\pi \qquad \textrm{(D)}\ 60+10\pi \qquad \textrm{(E)}\ 80+10\pi$

Solution

Problem 9

One fair die has faces $1$, $1$, $2$, $2$, $3$, $3$ and another has faces $4$, $4$, $5$, $5$, $6$, $6$. The dice are rolled and the numbers on the top faces are added. What is the probability that the sum will be odd?

$\mathrm{(A)} \frac{1}{3} \qquad \mathrm{(B)} \frac{4}{9} \qquad \mathrm{(C)} \frac{1}{2} \qquad \mathrm{(D)} \frac{5}{9} \qquad \mathrm{(E)} \frac{2}{3}$

Solution

Problem 10

In $\triangle ABC$, we have $AC = BC = 7$ and $AB = 2$. Suppose that $D$ is a point on line $AB$ such that $B$ lies between $A$ and $D$ and $CD = 8$. What is $BD$?

$\mathrm{(A)} 3 \qquad \mathrm{(B)} 2\sqrt{3} \qquad \mathrm{(C)} 4 \qquad \mathrm{(D)} 5 \qquad \mathrm{(E)} 4\sqrt{2}$

Solution

Problem 11

The first term of a sequence is $2005$. Each succeeding term is the sum of the cubes of the digits of the previous term. What is the ${2005}^{th}$ term of the sequence?

$\mathrm{(A)} 29 \qquad \mathrm{(B)} 55 \qquad \mathrm{(C)} 85 \qquad \mathrm{(D)} 133 \qquad \mathrm{(E)} 250$

Solution

Problem 12

Twelve fair dice are rolled. What is the probability that the product of the numbers on the top faces is prime?

$\mathrm{(A)} \left(\frac{1}{12}\right)^{12} \qquad \mathrm{(B)} \left(\frac{1}{6}\right)^{12} \qquad \mathrm{(C)} 2\left(\frac{1}{6}\right)^{11} \qquad \mathrm{(D)} \frac{5}{2}\left(\frac{1}{6}\right)^{11} \qquad \mathrm{(E)} \left(\frac{1}{6}\right)^{10}$

Solution

Problem 13

How many numbers between $1$ and $2005$ are integer multiples of $3$ or $4$ but not $12$?

$\mathrm{(A)} 501 \qquad \mathrm{(B)} 668 \qquad \mathrm{(C)} 835 \qquad \mathrm{(D)} 1002 \qquad \mathrm{(E)} 1169$

Solution

Problem 14

Equilateral $\triangle ABC$ has side length $2$, $M$ is the midpoint of $\overline{AC}$, and $C$ is the midpoint of $\overline{BD}$. What is the area of $\triangle CDM$? [asy]defaultpen(linewidth(.8pt)+fontsize(8pt));  pair B = (0,0); pair A = 2*dir(60); pair C = (2,0); pair D = (4,0); pair M = midpoint(A--C);  label("$A$",A,NW);label("$B$",B,SW);label("$C$",C, SE);label("$M$",M,NE);label("$D$",D,SE);  draw(A--B--C--cycle); draw(C--D--M--cycle);[/asy]$\textrm{(A)}\ \frac {\sqrt {2}}{2}\qquad \textrm{(B)}\ \frac {3}{4}\qquad \textrm{(C)}\ \frac {\sqrt {3}}{2}\qquad \textrm{(D)}\ 1\qquad \textrm{(E)}\ \sqrt {2}$

Solution

Problem 15

An envelope contains eight bills: $2$ ones, $2$ fives, $2$ tens, and $2$ twenties. Two bills are drawn at random without replacement. What is the probability that their sum is 36;$20$ or more?

$\mathrm{(A)} \frac{1}{4} \qquad \mathrm{(B)} \frac{2}{5} \qquad \mathrm{(C)} \frac{3}{7} \qquad \mathrm{(D)} \frac{1}{2} \qquad \mathrm{(E)} \frac{2}{3}$

Solution

Problem 16

The quadratic equation $x^2 + mx + n = 0$ has roots that are twice those of $x^2 + px + m = 0$, and none of $m$, $n$, and $p$ is zero. What is the value of $n/p$?

$\mathrm{(A)} 1 \qquad \mathrm{(B)} 2 \qquad \mathrm{(C)} 4 \qquad \mathrm{(D)} 8 \qquad \mathrm{(E)} 16$

Solution

Problem 17

Suppose that $4^a = 5$, $5^b = 6$, $6^c = 7$, and $7^d = 8$. What is $a * b * c * d$?

$\mathrm{(A)} 1 \qquad \mathrm{(B)} \frac{3}{2} \qquad \mathrm{(C)} 2 \qquad \mathrm{(D)} \frac{5}{2} \qquad \mathrm{(E)} 3$

Solution

Problem 18

All of David's telephone numbers have the form $555-abc-defg$, where $a$, $b$, $c$, $d$, $e$, $f$, and $g$ are distinct digits and in increasing order, and none is either $0$ or $1$. How many different telephone numbers can David have?

$\mathrm{(A)} 1 \qquad \mathrm{(B)} 2 \qquad \mathrm{(C)} 7 \qquad \mathrm{(D)} 8 \qquad \mathrm{(E)} 9$

Solution

Problem 19

On a certain math exam, $10\%$ of the students got $70$ points, $25\%$ got $80$ points, $20\%$ got $85$ points, $15\%$ got $90$ points, and the rest got $95$ points. What is the difference between the mean and the median score on this exam?

$\mathrm{(A)} 0 \qquad \mathrm{(B)} 1 \qquad \mathrm{(C)} 2 \qquad \mathrm{(D)} 4 \qquad \mathrm{(E)} 5$

Solution

Problem 20

What is the average (mean) of all $5$-digit numbers that can be formed by using each of the digits $1$, $3$, $5$, $7$, and $8$ exactly once?

$\mathrm{(A)} 48000 \qquad \mathrm{(B)} 49999.5 \qquad \mathrm{(C)} 53332.8 \qquad \mathrm{(D)} 55555 \qquad \mathrm{(E)} 56432.8$

Solution

Problem 21

Forty slips are placed into a hat, each bearing a number $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, or $10$, with each number entered on four slips. Four slips are drawn from the hat at random and without replacement. Let $p$ be the probability that all four slips bear the same number. Let $q$ be the probability that two of the slips bear a number $a$ and the other two bear a number $b \neq a$. What is the value of $q/p$?

$\mathrm{(A)} 162 \qquad \mathrm{(B)} 180 \qquad \mathrm{(C)} 324 \qquad \mathrm{(D)} 360 \qquad \mathrm{(E)} 720$

Solution

Problem 22

For how many positive integers $n$ less than or equal to $24$ is $n!$ evenly divisible by $1 + 2 + \ldots + n$?

$\mathrm{(A)} 8 \qquad \mathrm{(B)} 12 \qquad \mathrm{(C)} 16 \qquad \mathrm{(D)} 17 \qquad \mathrm{(E)} 21$

Solution

Problem 23

In trapezoid $ABCD$ we have $\overline{AB}$ parallel to $\overline{DC}$, $E$ as the midpoint of $\overline{BC}$, and $F$ as the midpoint of $\overline{DA}$. The area of $ABEF$ is twice the area of $FECD$. What is $AB/DC$?

$\mathrm{(A)} 2 \qquad \mathrm{(B)} 3 \qquad \mathrm{(C)} 5 \qquad \mathrm{(D)} 6 \qquad \mathrm{(E)} 8$

Solution

Problem 24

Let $x$ and $y$ be two-digit integers such that $y$ is obtained by reversing the digits of $x$. The integers $x$ and $y$ satisfy $x^2 - y^2 = m^2$ for some positive integer $m$. What is $x + y + m$?

$\mathrm{(A)} 88 \qquad \mathrm{(B)} 112 \qquad \mathrm{(C)} 116 \qquad \mathrm{(D)} 144 \qquad \mathrm{(E)} 154$

Solution

Problem 25

A subset $B$ of the set of integers from $1$ to $100$, inclusive, has the property that no two elements of $B$ sum to $125$. What is the maximum possible number of elements in $B$?

$\mathrm{(A)} 50 \qquad \mathrm{(B)} 51 \qquad \mathrm{(C)} 62 \qquad \mathrm{(D)} 65 \qquad \mathrm{(E)} 68$

Solution

See also