Difference between revisions of "1993 AJHSME Problems/Problem 4"

(Added solution)
 
Line 7: Line 7:
 
==Solution==
 
==Solution==
  
<math>1000\times10=10^4</math>
+
<math>1000\times10=10^4\
 +
0.1993=1993\times10^{-4}\
 +
1993\times1993\times10^{-4}\times10^4= \boxed{\textbf{(E)}\ (1993)^2}</math>
  
<math>0.1993=1993\times10^{-4}</math>
+
==See Also==
  
<math>1993\times1993\times10^{-4}\times10^4=(1993)^2</math>
+
{{AJHSME box|year=1993|num-b=3|num-a=5}}
 
 
<math>\boxed{E) (1993)^2}</math>
 

Revision as of 21:28, 22 December 2012

Problem 4

$1000\times 1993 \times 0.1993 \times 10 =$

$\text{(A)}\ 1.993\times 10^3 \qquad \text{(B)}\ 1993.1993 \qquad \text{(C)}\ (199.3)^2 \qquad \text{(D)}\ 1,993,001.993 \qquad \text{(E)}\ (1993)^2$

Solution

$1000\times10=10^4\\ 0.1993=1993\times10^{-4}\\ 1993\times1993\times10^{-4}\times10^4= \boxed{\textbf{(E)}\ (1993)^2}$

See Also

1993 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions