Difference between revisions of "2012 AIME I Problems/Problem 10"

m (Solution)
Line 8: Line 8:
 
== See also ==
 
== See also ==
 
{{AIME box|year=2012|n=I|num-b=9|num-a=11}}
 
{{AIME box|year=2012|n=I|num-b=9|num-a=11}}
 +
{{MAA Notice}}

Revision as of 19:28, 4 July 2013

Problem 10

Let $\mathcal{S}$ be the set of all perfect squares whose rightmost three digits in base $10$ are $256$. Let $\mathcal{T}$ be the set of all numbers of the form $\frac{x-256}{1000}$, where $x$ is in $\mathcal{S}$. In other words, $\mathcal{T}$ is the set of numbers that result when the last three digits of each number in $\mathcal{S}$ are truncated. Find the remainder when the tenth smallest element of $\mathcal{T}$ is divided by $1000$.

Solution

It is apparent that for a perfect square $s^2$ to satisfy the constraints, we must have $s^2 - 256 = 1000n$ or $(s+16)(s-16) = 1000n.$ Now in order for $(s+16)(s-16)$ to be a multiple of $1000,$ at least one of $s+16$ and $s-16$ must be a multiple of $5,$ and since $s+16$ and $s-16$ are in different residue classes mod $5,$ one term must have all the factors of $5$ and thus must be a multiple of $125.$ Furthermore, each of $s+16$ and $s-16$ must have at least two factors of $2,$ since otherwise $(s+16)(s-16)$ could not possibly be divisible by $8.$ So therefore the conditions are satisfied if either $s+16$ or $s-16$ is divisible by $500,$ or equivalently if $s = 500n \pm 16.$ Counting up from $n=0$ to $n=5,$ we see that the tenth value of $s$ is $500 \cdot 5 - 16 = 2484$ and thus the corresponding element in $\mathcal{T}$ is $\frac{2484^2 - 256}{1000} = 6170 \rightarrow \boxed{170.}$

See also

2012 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png