Difference between revisions of "1992 AJHSME Problems/Problem 11"

(Created page with "== Problem == The bar graph shows the results of a survey on color preferences. What percent preferred blue? <asy> for (int a = 1; a <= 6; ++a) { draw((-1.5,4*a)--(1.5,4*a...")
 
 
(One intermediate revision by one other user not shown)
Line 62: Line 62:
  
 
The total frequency is <math> 50+60+40+60+40=250 </math>, with the blue frequency of <math> 60 </math>. Therefore, the precentage that preferred blue is <math> \frac{60}{250}=\boxed{\text{(B)}\ 24\%} </math>.
 
The total frequency is <math> 50+60+40+60+40=250 </math>, with the blue frequency of <math> 60 </math>. Therefore, the precentage that preferred blue is <math> \frac{60}{250}=\boxed{\text{(B)}\ 24\%} </math>.
 +
 +
 +
==See Also==
 +
{{AJHSME box|year=1992|num-b=10|num-a=12}}
 +
{{MAA Notice}}

Latest revision as of 23:09, 4 July 2013

Problem

The bar graph shows the results of a survey on color preferences. What percent preferred blue?

[asy] for (int a = 1; a <= 6; ++a) {     draw((-1.5,4*a)--(1.5,4*a)); } draw((0,28)--(0,0)--(32,0)); draw((3,0)--(3,20)--(6,20)--(6,0)); draw((9,0)--(9,24)--(12,24)--(12,0)); draw((15,0)--(15,16)--(18,16)--(18,0)); draw((21,0)--(21,24)--(24,24)--(24,0)); draw((27,0)--(27,16)--(30,16)--(30,0));  label("$20$",(-1.5,8),W); label("$40$",(-1.5,16),W); label("$60$",(-1.5,24),W);  label("$\textbf{COLOR SURVEY}$",(16,26),N); label("$\textbf{F}$",(-6,25),W); label("$\textbf{r}$",(-6.75,22.4),W); label("$\textbf{e}$",(-6.75,19.8),W); label("$\textbf{q}$",(-6.75,17.2),W); label("$\textbf{u}$",(-6.75,15),W); label("$\textbf{e}$",(-6.75,12.4),W); label("$\textbf{n}$",(-6.75,9.8),W); label("$\textbf{c}$",(-6.75,7.2),W); label("$\textbf{y}$",(-6.75,4.6),W);  label("D",(4.5,.2),N); label("E",(4.5,3),N); label("R",(4.5,5.8),N);  label("E",(10.5,.2),N); label("U",(10.5,3),N); label("L",(10.5,5.8),N); label("B",(10.5,8.6),N);  label("N",(16.5,.2),N); label("W",(16.5,3),N); label("O",(16.5,5.8),N); label("R",(16.5,8.6),N); label("B",(16.5,11.4),N);  label("K",(22.5,.2),N); label("N",(22.5,3),N); label("I",(22.5,5.8),N); label("P",(22.5,8.6),N);  label("N",(28.5,.2),N); label("E",(28.5,3),N); label("E",(28.5,5.8),N); label("R",(28.5,8.6),N); label("G",(28.5,11.4),N); [/asy]

$\text{(A)}\ 20\% \qquad \text{(B)}\ 24\% \qquad \text{(C)}\ 30\% \qquad \text{(D)}\ 36\% \qquad \text{(E)}\ 42\%$

Solution

The total frequency is $50+60+40+60+40=250$, with the blue frequency of $60$. Therefore, the precentage that preferred blue is $\frac{60}{250}=\boxed{\text{(B)}\ 24\%}$.


See Also

1992 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png