Difference between revisions of "1993 AJHSME Problems/Problem 20"

(Created page with "==Problem== When <math>10^{93}-93</math> is expressed as a single whole number, the sum of the digits is <math>\text{(A)}\ 10 \qquad \text{(B)}\ 93 \qquad \text{(C)}\ 819 \qqua...")
 
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
  
 
<math>\text{(A)}\ 10 \qquad \text{(B)}\ 93 \qquad \text{(C)}\ 819 \qquad \text{(D)}\ 826 \qquad \text{(E)}\ 833</math>
 
<math>\text{(A)}\ 10 \qquad \text{(B)}\ 93 \qquad \text{(C)}\ 819 \qquad \text{(D)}\ 826 \qquad \text{(E)}\ 833</math>
 +
 +
==Solution==
 +
 +
<cmath>\begin{align*}
 +
10^2-93&=7\\
 +
10^3-93&=907\\
 +
10^4-93&=9907\\
 +
\end{align*}</cmath>
 +
 +
This can be generalized into <math>10^n-93</math> is equal is <math>n-2</math> nines followed by the digits <math>07</math>. Then <math>10^{93}-93</math> is equal to <math>91</math> nines followed by <math>07</math>. The sum of the digits is equal to <math>9(91)+7=819+7=\boxed{\text{(D)}\ 826}</math>.
 +
 +
==See Also==
 +
{{AJHSME box|year=1993|num-b=19|num-a=21}}
 +
{{MAA Notice}}

Latest revision as of 23:11, 4 July 2013

Problem

When $10^{93}-93$ is expressed as a single whole number, the sum of the digits is

$\text{(A)}\ 10 \qquad \text{(B)}\ 93 \qquad \text{(C)}\ 819 \qquad \text{(D)}\ 826 \qquad \text{(E)}\ 833$

Solution

\begin{align*} 10^2-93&=7\\ 10^3-93&=907\\ 10^4-93&=9907\\ \end{align*}

This can be generalized into $10^n-93$ is equal is $n-2$ nines followed by the digits $07$. Then $10^{93}-93$ is equal to $91$ nines followed by $07$. The sum of the digits is equal to $9(91)+7=819+7=\boxed{\text{(D)}\ 826}$.

See Also

1993 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png