Difference between revisions of "1974 AHSME Problems/Problem 15"

(Created page with "==Problem== If <math> x<-2 </math>, then <math> |1-|1+x|| </math> equals <math> \mathrm{(A)\ } 2+x \qquad \mathrm{(B) \ }-2-x \qquad \mathrm{(C) \ } x \qquad \mathrm{(D) \ } ...")
 
 
(One intermediate revision by one other user not shown)
Line 11: Line 11:
 
==See Also==
 
==See Also==
 
{{AHSME box|year=1974|num-b=14|num-a=16}}
 
{{AHSME box|year=1974|num-b=14|num-a=16}}
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 11:43, 5 July 2013

Problem

If $x<-2$, then $|1-|1+x||$ equals

$\mathrm{(A)\ } 2+x \qquad \mathrm{(B) \ }-2-x \qquad \mathrm{(C) \  } x \qquad \mathrm{(D) \  } -x \qquad \mathrm{(E) \  }-2$

Solution

Notice that, for $a<0$, $|a|=-a$, and for $a>0$, $|a|=a$.

Since $x<-2$, $1+x<1-2<0$, so $|1+x|=-x-1$. Therefore, $1-|1+x|=1+x+1=x+2<-2+2=0$, and so $|1-|1+x||=|x+2|=-2-x, \boxed{\text{B}}$.

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png