Difference between revisions of "2012 AIME I Problems/Problem 6"
(→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | Substituting the first equation into the second, we find that <math>(z^{13})^{11} = z</math> and thus <math>z^{143} = z.</math> <math>z \neq 0,</math> because <math>\text{Im}(z)</math> is given as <math>\sin(\text{something ugly}),</math> so we can divide by <math>z</math> to get <math>z^{142} = 1.</math> So, <math>z</math> must be a <math>142</math>nd root of unity, and thus the imaginary part of <math>z</math> will be of the form <math>\sin{\frac{2k\pi}{142}} = \sin{\frac{k\pi}{71}},</math> where <math>k \in \{1, 2, \ldots, 70\}.</math> | + | Substituting the first equation into the second, we find that <math>(z^{13})^{11} = z</math> and thus <math>z^{143} = z.</math> <math>z \neq 0,</math> because <math>\text{Im}(z)</math> is given as <math>\sin(\text{something ugly}),</math> so we can divide by <math>z</math> to get <math>z^{142} = 1.</math> So, <math>z</math> must be a <math>142</math>nd root of unity, and thus the imaginary part of <math>z</math> will be of the form <math>\sin{\frac{2k\pi}{142}} = \sin{\frac{k\pi}{71}},</math> where <math>k \in \{1, 2, \ldots, 70\}.</math> Note that <math>71</math> is prime and <math>k<71</math> by the conditions of the problem, so the denominator in the argument of this value will always be <math>71.</math> Thus, <math>n = \boxed{071.}</math> |
− | |||
− | Note that <math>71</math> is prime and <math>k<71</math> by the conditions of the problem, so the denominator in the argument of this value will always be <math>71.</math> Thus, <math>n = \boxed{071.}</math> | ||
== See also == | == See also == | ||
{{AIME box|year=2012|n=I|num-b=5|num-a=7}} | {{AIME box|year=2012|n=I|num-b=5|num-a=7}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:54, 26 February 2014
Problem 6
The complex numbers and satisfy and the imaginary part of is , for relatively prime positive integers and with Find
Solution
Substituting the first equation into the second, we find that and thus because is given as so we can divide by to get So, must be a nd root of unity, and thus the imaginary part of will be of the form where Note that is prime and by the conditions of the problem, so the denominator in the argument of this value will always be Thus,
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.