Difference between revisions of "2005 AMC 10A Problems/Problem 23"
CaptainGeo (talk | contribs) (→Solution 3) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>AB</math> be a diameter of a circle and let <math>C</math> be a point on <math>AB</math> with <math>2\cdot AC=BC</math>. Let <math>D</math> and <math>E</math> be points on the circle such that <math>DC \perp AB</math> and <math>DE</math> is a second diameter. What is the ratio of the area of <math>\triangle DCE</math> to the area of <math>\triangle ABD</math>? | Let <math>AB</math> be a diameter of a circle and let <math>C</math> be a point on <math>AB</math> with <math>2\cdot AC=BC</math>. Let <math>D</math> and <math>E</math> be points on the circle such that <math>DC \perp AB</math> and <math>DE</math> is a second diameter. What is the ratio of the area of <math>\triangle DCE</math> to the area of <math>\triangle ABD</math>? | ||
+ | |||
+ | <asy> | ||
+ | unitsize(2.5cm); | ||
+ | defaultpen(fontsize(10pt)+linewidth(.8pt)); | ||
+ | dotfactor=3; | ||
+ | pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); | ||
+ | pair D=dir(aCos(C.x)), E=(-D.x,-D.y); | ||
+ | draw(A--B--D--cycle); | ||
+ | draw(D--E--C); | ||
+ | draw(unitcircle,white); | ||
+ | drawline(D,C); | ||
+ | dot(O); | ||
+ | clip(unitcircle); | ||
+ | draw(unitcircle); | ||
+ | label("$E$",E,SSE); | ||
+ | label("$B$",B,E); | ||
+ | label("$A$",A,W); | ||
+ | label("$D$",D,NNW); | ||
+ | label("$C$",C,SW); | ||
+ | draw(rightanglemark(D,C,B,2));</asy> | ||
<math> \mathrm{(A) \ } \frac{1}{6}\qquad \mathrm{(B) \ } \frac{1}{4}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \frac{2}{3} </math> | <math> \mathrm{(A) \ } \frac{1}{6}\qquad \mathrm{(B) \ } \frac{1}{4}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \frac{2}{3} </math> |
Revision as of 21:17, 3 January 2016
Contents
[hide]Problem
Let be a diameter of a circle and let be a point on with . Let and be points on the circle such that and is a second diameter. What is the ratio of the area of to the area of ?
Solution 1
Let us assume that the diameter is of length .
is of diameter and is .
is the radius of the circle, so using the Pythagorean theorem height of is . This is also the height of the .
Area of the is = .
The height of can be found using the area of and as base.
Hence the height of is = .
The diameter is the base for both the triangles and .
Hence, the ratio of the area of to the area of is =
Solution 2
Since and share a base, the ratio of their areas is the ratio of their altitudes. Draw the altitude from to .
.
Since , then . So the ratio of the two altitudes is
Solution 3
Say the center of the circle is point ; Without loss of generality, assume , so and the diameter and radius are and , respectively. Therefore, , and . The area of can be expressed as happens to be the area of . Furthermore, or Therefore, the ratio is
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.