Difference between revisions of "1993 AJHSME Problems/Problem 16"

(Undo revision 80587 by Ivanthekingiii (talk))
 
(3 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
<math> \frac{1}{1+\frac{1}{2+\frac{1}{3}}}= </math>
 
<math> \frac{1}{1+\frac{1}{2+\frac{1}{3}}}= </math>
  
<math>\text{(A)}\ \dfrac{1}{6} \qquad \text{(B)}\ \dfrac{3}{10} \qquad \text{(C)}\ \dfrac{7}{10} \qquad \text{(D)}\ \dfrac{5}{6} \qquad \text{(E)}\ \dfrac{10}{3}</math> 84.3 $
+
<math>\text{(A)}\ \dfrac{1}{6} \qquad \text{(B)}\ \dfrac{3}{10} \qquad \text{(C)}\ \dfrac{7}{10} \qquad \text{(D)}\ \dfrac{5}{6} \qquad \text{(E)}\ \dfrac{10}{3}</math>
  
 
==Solution==
 
==Solution==
Line 10: Line 10:
 
==See Also==
 
==See Also==
 
{{AJHSME box|year=1993|num-b=15|num-a=17}}
 
{{AJHSME box|year=1993|num-b=15|num-a=17}}
 +
{{MAA Notice}}

Latest revision as of 18:59, 10 October 2016

Problem

$\frac{1}{1+\frac{1}{2+\frac{1}{3}}}=$

$\text{(A)}\ \dfrac{1}{6} \qquad \text{(B)}\ \dfrac{3}{10} \qquad \text{(C)}\ \dfrac{7}{10} \qquad \text{(D)}\ \dfrac{5}{6} \qquad \text{(E)}\ \dfrac{10}{3}$

Solution

\[\frac{1}{1+\frac{1}{2+\frac13}} = \frac{1}{1+\frac{1}{\frac73}} = \frac{1}{1+\frac37} = \frac{1}{\frac{10}{7}} = \boxed{\text{(C)}\ \frac{7}{10}}\]

See Also

1993 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png