Difference between revisions of "2017 AIME I Problems/Problem 15"

m (Solution)
(Solution)
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
Lemma. If <math>x,y</math> satisfy <math>px+qy=1</math>, then the minimal value of <math>\sqrt{x^2+y^2}</math> is <math>\frac{1}{\sqrt{p^2+q^2}}</math>.
 +
 +
Proof. Recall that the distance between the point <math>(x_0,y_0)</math> and the line <math>px+qy+r = 0</math> is given by <math>\frac{|px_0+qy_0+r|}{\sqrt{p^2+q^2}}</math>. In particular, the distance between the origin and any point <math>(x,y)</math> on the line <math>px+qy=1</math> is at least <math>\frac{1}{\sqrt{p^2+q^2}}</math>.
 +
 +
---
 +
 +
Let the vertices of the right triangle be <math>(0,0),(5,0),(0,2\sqrt{3}),</math> and let <math>(a,0),(0,b)</math> be two of the vertices of the equilateral triangle. Then, the third vertex of the equilateral triangle is <math>\left(\frac{a+\sqrt{3}b}{2},\frac{\sqrt{3}a+b}{2}\right)</math>. This point must lie on the hypotenuse <math>\frac{x}{5} + \frac{y}{2\sqrt{3}} = 1</math>, i.e. <math>a,b</math> must satisfy
 +
<cmath> \frac{a+\sqrt{3}b}{10}+\frac{\sqrt{3}a+b}{4\sqrt{3}} = 1,</cmath>
 +
which can be simplified to
 +
<cmath>\frac{7}{20}a + \frac{11\sqrt{3}}{60}b = 1.</cmath>
 +
 +
By the lemma, the minimal value of <math>\sqrt{a^2+b^2}</math> is
 +
<cmath>\frac{1}{\left(\frac{7}{20}\right)^2 + \left(\frac{11\sqrt{3}}{60}\right)^2} = \frac{10\sqrt{3}}{\sqrt{67}},</cmath>
 +
so the minimal area of the equilateral triangle is
 +
<cmath> \frac{\sqrt{3}}{4} \cdot \left(\frac{10\sqrt{3}}{\sqrt{67}}\right)^2 = \frac{\sqrt{3}}{4} \cdot \frac{300}{67} = \frac{75\sqrt{3}}{67},</cmath>
 +
and hence the answer is <math>75+3+67=\boxed{145}</math>.
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2017|n=I|num-b=14|after=Last Problem}}
 
{{AIME box|year=2017|n=I|num-b=14|after=Last Problem}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:31, 9 March 2017

Problem 15

The area of the smallest equilateral triangle with one vertex on each of the sides of the right triangle with side lengths $2\sqrt{3},~5,$ and $\sqrt{37},$ as shown, is $\frac{m\sqrt{p}}{n},$ where $m,~n,$ and $p$ are positive integers, $m$ and $n$ are relatively prime, and $p$ is not divisible by the square of any prime. Find $m+n+p.$

Solution

Lemma. If $x,y$ satisfy $px+qy=1$, then the minimal value of $\sqrt{x^2+y^2}$ is $\frac{1}{\sqrt{p^2+q^2}}$.

Proof. Recall that the distance between the point $(x_0,y_0)$ and the line $px+qy+r = 0$ is given by $\frac{|px_0+qy_0+r|}{\sqrt{p^2+q^2}}$. In particular, the distance between the origin and any point $(x,y)$ on the line $px+qy=1$ is at least $\frac{1}{\sqrt{p^2+q^2}}$.

---

Let the vertices of the right triangle be $(0,0),(5,0),(0,2\sqrt{3}),$ and let $(a,0),(0,b)$ be two of the vertices of the equilateral triangle. Then, the third vertex of the equilateral triangle is $\left(\frac{a+\sqrt{3}b}{2},\frac{\sqrt{3}a+b}{2}\right)$. This point must lie on the hypotenuse $\frac{x}{5} + \frac{y}{2\sqrt{3}} = 1$, i.e. $a,b$ must satisfy \[\frac{a+\sqrt{3}b}{10}+\frac{\sqrt{3}a+b}{4\sqrt{3}} = 1,\] which can be simplified to \[\frac{7}{20}a + \frac{11\sqrt{3}}{60}b = 1.\]

By the lemma, the minimal value of $\sqrt{a^2+b^2}$ is \[\frac{1}{\left(\frac{7}{20}\right)^2 + \left(\frac{11\sqrt{3}}{60}\right)^2} = \frac{10\sqrt{3}}{\sqrt{67}},\] so the minimal area of the equilateral triangle is \[\frac{\sqrt{3}}{4} \cdot \left(\frac{10\sqrt{3}}{\sqrt{67}}\right)^2 = \frac{\sqrt{3}}{4} \cdot \frac{300}{67} = \frac{75\sqrt{3}}{67},\] and hence the answer is $75+3+67=\boxed{145}$.

See Also

2017 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png