Difference between revisions of "2017 AIME I Problems/Problem 15"
m (→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | Lemma. If <math>x,y</math> satisfy <math>px+qy=1</math>, then the minimal value of <math>\sqrt{x^2+y^2}</math> is <math>\frac{1}{\sqrt{p^2+q^2}}</math>. | ||
+ | |||
+ | Proof. Recall that the distance between the point <math>(x_0,y_0)</math> and the line <math>px+qy+r = 0</math> is given by <math>\frac{|px_0+qy_0+r|}{\sqrt{p^2+q^2}}</math>. In particular, the distance between the origin and any point <math>(x,y)</math> on the line <math>px+qy=1</math> is at least <math>\frac{1}{\sqrt{p^2+q^2}}</math>. | ||
+ | |||
+ | --- | ||
+ | |||
+ | Let the vertices of the right triangle be <math>(0,0),(5,0),(0,2\sqrt{3}),</math> and let <math>(a,0),(0,b)</math> be two of the vertices of the equilateral triangle. Then, the third vertex of the equilateral triangle is <math>\left(\frac{a+\sqrt{3}b}{2},\frac{\sqrt{3}a+b}{2}\right)</math>. This point must lie on the hypotenuse <math>\frac{x}{5} + \frac{y}{2\sqrt{3}} = 1</math>, i.e. <math>a,b</math> must satisfy | ||
+ | <cmath> \frac{a+\sqrt{3}b}{10}+\frac{\sqrt{3}a+b}{4\sqrt{3}} = 1,</cmath> | ||
+ | which can be simplified to | ||
+ | <cmath>\frac{7}{20}a + \frac{11\sqrt{3}}{60}b = 1.</cmath> | ||
+ | |||
+ | By the lemma, the minimal value of <math>\sqrt{a^2+b^2}</math> is | ||
+ | <cmath>\frac{1}{\left(\frac{7}{20}\right)^2 + \left(\frac{11\sqrt{3}}{60}\right)^2} = \frac{10\sqrt{3}}{\sqrt{67}},</cmath> | ||
+ | so the minimal area of the equilateral triangle is | ||
+ | <cmath> \frac{\sqrt{3}}{4} \cdot \left(\frac{10\sqrt{3}}{\sqrt{67}}\right)^2 = \frac{\sqrt{3}}{4} \cdot \frac{300}{67} = \frac{75\sqrt{3}}{67},</cmath> | ||
+ | and hence the answer is <math>75+3+67=\boxed{145}</math>. | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2017|n=I|num-b=14|after=Last Problem}} | {{AIME box|year=2017|n=I|num-b=14|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:31, 9 March 2017
Problem 15
The area of the smallest equilateral triangle with one vertex on each of the sides of the right triangle with side lengths and as shown, is where and are positive integers, and are relatively prime, and is not divisible by the square of any prime. Find
Solution
Lemma. If satisfy , then the minimal value of is .
Proof. Recall that the distance between the point and the line is given by . In particular, the distance between the origin and any point on the line is at least .
---
Let the vertices of the right triangle be and let be two of the vertices of the equilateral triangle. Then, the third vertex of the equilateral triangle is . This point must lie on the hypotenuse , i.e. must satisfy which can be simplified to
By the lemma, the minimal value of is so the minimal area of the equilateral triangle is and hence the answer is .
See Also
2017 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.