Difference between revisions of "1986 AIME Problems/Problem 9"
(→Solution 1) |
(→Solution) |
||
Line 83: | Line 83: | ||
Refer to the diagram in solution 2; let <math>a^2=[E'EP]</math>, <math>b^2=[D'DP]</math>, and <math>c^2=[F'FP]</math>. Now, note that <math>[E'BD]</math>, <math>[D'DP]</math>, and <math>[E'EP]</math> are similar, so through some similarities we find that <math>\frac{E'P}{PD}=\frac{a}{b}\implies\frac{E'D}{PD}=\frac{a+b}{b}\implies[E'BD]=b^2\left(\frac{a+b}{b}\right)^2=(a+b)^2</math>. Similarly, we find that <math>[D'AF]=(b+c)^2</math> and <math>[F'CE]=(c+a)^2</math>, so <math>[ABC]=(a+b+c)^2</math>. Now, again from similarity, it follows that <math>\frac{d}{510}=\frac{a+b}{a+b+c}</math>, <math>\frac{d}{450}=\frac{b+c}{a+b+c}</math>, and <math>\frac{d}{425}=\frac{c+a}{a+b+c}</math>, so adding these together, simplifying, and solving gives <math>d=\frac{2}{\frac{1}{425}+\frac{1}{450}+\frac{1}{510}}=\frac{10}{\frac{1}{85}+\frac{1}{90}+\frac{1}{102}}=\frac{10}{\frac{1}{5}\left(\frac{1}{17}+\frac{1}{18}\right)+\frac{1}{102}}=\frac{10}{\frac{1}{5}\cdot\frac{35}{306}+\frac{3}{306}}</math> | Refer to the diagram in solution 2; let <math>a^2=[E'EP]</math>, <math>b^2=[D'DP]</math>, and <math>c^2=[F'FP]</math>. Now, note that <math>[E'BD]</math>, <math>[D'DP]</math>, and <math>[E'EP]</math> are similar, so through some similarities we find that <math>\frac{E'P}{PD}=\frac{a}{b}\implies\frac{E'D}{PD}=\frac{a+b}{b}\implies[E'BD]=b^2\left(\frac{a+b}{b}\right)^2=(a+b)^2</math>. Similarly, we find that <math>[D'AF]=(b+c)^2</math> and <math>[F'CE]=(c+a)^2</math>, so <math>[ABC]=(a+b+c)^2</math>. Now, again from similarity, it follows that <math>\frac{d}{510}=\frac{a+b}{a+b+c}</math>, <math>\frac{d}{450}=\frac{b+c}{a+b+c}</math>, and <math>\frac{d}{425}=\frac{c+a}{a+b+c}</math>, so adding these together, simplifying, and solving gives <math>d=\frac{2}{\frac{1}{425}+\frac{1}{450}+\frac{1}{510}}=\frac{10}{\frac{1}{85}+\frac{1}{90}+\frac{1}{102}}=\frac{10}{\frac{1}{5}\left(\frac{1}{17}+\frac{1}{18}\right)+\frac{1}{102}}=\frac{10}{\frac{1}{5}\cdot\frac{35}{306}+\frac{3}{306}}</math> | ||
<math>=\frac{10}{\frac{10}{306}}=\boxed{306}</math>. | <math>=\frac{10}{\frac{10}{306}}=\boxed{306}</math>. | ||
+ | |||
+ | === Solution 5 === | ||
+ | Refer to the diagram from Solution 2. Notice that because <math>CE'PF</math>, <math>AF'PD</math>, and <math>BD'PE</math> are parallelograms, <math>\overline{DD'} = 425-d</math>, <math>\overline{EE'} = 450-d</math>, and <math>\overline{FF'} = 510-d</math>. | ||
+ | |||
+ | Let <math>F'P = x</math>. Then, because <math>\triangle ABC \sim \triangle F'PF</math>, <math>\frac{AB}{AC}=\frac{F'P}{F'F}</math>, so <math>\frac{425}{510}=\frac{x}{510-d}</math>. Simplifying the LHS and cross-multiplying, we have <math>6x=2550-5d</math>. From the same triangles, we can find that <math>FP=\frac{18}{17}x</math>. | ||
+ | |||
+ | <math>\triangle PEE'</math> is also similar to <math>\triangle F'PF</math>. Since <math>EF'=d</math>, <math>EP=d-x</math>. We now have <math>\frac{PE}{EE'}=\frac{F'P}{FP}</math>, and <math>\frac{d-x}{450-d}=\frac{17}{18}</math>. Cross multiplying, we have <math>18d-18x=450*17-17d</math>. Using the previous equation to substitute for <math>x</math>, we have: <cmath>18d-3*2550+15d=450*17-17d</cmath> This is a linear equation in one variable, and we can solve to get <math>d=\boxed{306}</math> | ||
+ | |||
+ | *I did not show the multiplication in the last equation because most of it cancels out when solving. | ||
+ | |||
+ | (Note: I chose <math>F'P</math> to be <math>x</math> only because that is what I had written when originally solving. The solution would work with other choices for <math>x</math>.) | ||
== See also == | == See also == |
Revision as of 14:16, 13 July 2017
Problem
In , , , and . An interior point is then drawn, and segments are drawn through parallel to the sides of the triangle. If these three segments are of an equal length , find .
Contents
[hide]Solution
Solution 1
Construct cevians , and through . Place masses of on , and respectively; then has mass .
Notice that has mass . On the other hand, by similar triangles, . Hence by mass points we find that Similarly, we obtain Summing these three equations yields
Hence,
Solution 2
Let the points at which the segments hit the triangle be called as shown above. As a result of the lines being parallel, all three smaller triangles and the larger triangle are similar (). The remaining three sections are parallelograms.
Since is a parallelogram, we find , and similarly . So . Thus . By the same logic, .
Since , we have the proportion:
Doing the same with , we find that . Now, .
Solution 3
Define the points the same as above.
Let , , , , and
The key theorem we apply here is that the ratio of the areas of 2 similar triangles is the ratio of a pair of corresponding sides squared.
Let the length of the segment be and the area of the triangle be , using the theorem, we get:
, , adding all these together and using we get
Using corresponding angles from parallel lines, it is easy to show that , since and are parallelograms, it is easy to show that
Now we have the side length ratio, so we have the area ratio , by symmetry, we have and
Substituting these into our initial equation, we have answer follows after some hideous computation.
Solution 4
Refer to the diagram in solution 2; let , , and . Now, note that , , and are similar, so through some similarities we find that . Similarly, we find that and , so . Now, again from similarity, it follows that , , and , so adding these together, simplifying, and solving gives .
Solution 5
Refer to the diagram from Solution 2. Notice that because , , and are parallelograms, , , and .
Let . Then, because , , so . Simplifying the LHS and cross-multiplying, we have . From the same triangles, we can find that .
is also similar to . Since , . We now have , and . Cross multiplying, we have . Using the previous equation to substitute for , we have: This is a linear equation in one variable, and we can solve to get
- I did not show the multiplication in the last equation because most of it cancels out when solving.
(Note: I chose to be only because that is what I had written when originally solving. The solution would work with other choices for .)
See also
1986 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.