Difference between revisions of "Euler line"
m (→Analytic Proof of Existence) |
|||
Line 19: | Line 19: | ||
− | + | ===See also=== | |
+ | *[[De Longchamps point]] | ||
{{stub}} | {{stub}} |
Revision as of 17:33, 5 August 2017
In any triangle , the Euler line is a line which passes through the orthocenter , centroid , circumcenter , nine-point center and de Longchamps point . It is named after Leonhard Euler. Its existence is a non-trivial fact of Euclidean geometry. Certain fixed orders and distance ratios hold among these points. In particular, and
Given the orthic triangle of , the Euler lines of ,, and concur at , the nine-point circle of .
Contents
[hide]Proof Centroid Lies on Euler Line
This proof utilizes the concept of spiral similarity, which in this case is a rotation followed homothety. Consider the medial triangle . It is similar to . Specifically, a rotation of about the midpoint of followed by a homothety with scale factor centered at brings . Let us examine what else this transformation, which we denote as , will do.
It turns out is the orthocenter, and is the centroid of . Thus, . As a homothety preserves angles, it follows that . Finally, as it follows that Thus, are collinear, and .
Proof Nine-Point Center Lies on Euler Line
Assuming that the nine point circle exists and that is the center, note that a homothety centered at with factor brings the Euler points onto the circumcircle of . Thus, it brings the nine-point circle to the circumcircle. Additionally, should be sent to , thus and .
Analytic Proof of Existence
Let the circumcenter be represented by the vector , and let vectors correspond to the vertices of the triangle. It is well known the that the orthocenter is and the centroid is . Thus, are collinear and
See also
This article is a stub. Help us out by expanding it.