Difference between revisions of "2017 AIME I Problems/Problem 4"
Stormstar-- (talk | contribs) m |
|||
Line 47: | Line 47: | ||
This simplifies to <math>V = 800\sqrt {3}</math>, so <math>m+n = \boxed {803}</math>. | This simplifies to <math>V = 800\sqrt {3}</math>, so <math>m+n = \boxed {803}</math>. | ||
+ | ==Solution 2== | ||
+ | From above, we find that the foot of the altitude from <math>P</math> lands on the circumcenter of <math>\triangle ABC</math>. | ||
+ | Then we write the area of <math>\triangle ABC</math> in two ways: | ||
+ | <cmath>[ABC] = </cmath> | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2017|n=I|num-b=3|num-a=5}} | {{AIME box|year=2017|n=I|num-b=3|num-a=5}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:38, 5 January 2018
Contents
Problem 4
A pyramid has a triangular base with side lengths , , and . The three edges of the pyramid from the three corners of the base to the fourth vertex of the pyramid all have length . The volume of the pyramid is , where and are positive integers, and is not divisible by the square of any prime. Find .
Solution
Let the triangular base be , with . We find that the altitude to side is , so the area of is .
Let the fourth vertex of the tetrahedron be , and let the midpoint of be . Since is equidistant from , , and , the line through perpendicular to the plane of will pass through the circumcenter of , which we will call . Note that is equidistant from each of , , and . Then,
Let . Equation :
Squaring both sides, we have
Substituting with equation :
We now find that .
Let the distance . Using the Pythagorean Theorem on triangle , , or (all three are congruent by SSS):
Finally, by the formula for volume of a pyramid,
This simplifies to , so .
Solution 2
From above, we find that the foot of the altitude from lands on the circumcenter of . Then we write the area of in two ways:
See Also
2017 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.