Difference between revisions of "2018 AIME II Problems/Problem 8"
(Created page with "==Problem== A frog is positioned at the origin of the coordinate plane. From the point <math>(x, y)</math>, the frog can jump to any of the points <math>(x + 1, y)</math>, <m...") |
(→Problem) |
||
Line 3: | Line 3: | ||
A frog is positioned at the origin of the coordinate plane. From the point <math>(x, y)</math>, the frog can jump to any of the points <math>(x + 1, y)</math>, <math>(x + 2, y)</math>, <math>(x, y + 1)</math>, or <math>(x, y + 2)</math>. Find the number of distinct sequences of jumps in which the frog begins at <math>(0, 0)</math> and ends at <math>(4, 4)</math>. | A frog is positioned at the origin of the coordinate plane. From the point <math>(x, y)</math>, the frog can jump to any of the points <math>(x + 1, y)</math>, <math>(x + 2, y)</math>, <math>(x, y + 1)</math>, or <math>(x, y + 2)</math>. Find the number of distinct sequences of jumps in which the frog begins at <math>(0, 0)</math> and ends at <math>(4, 4)</math>. | ||
+ | ==Solution== | ||
+ | We solve this problem by working backwards. Notice, the only points the frog can be on to jump to <math>(4,4)</math> in one move are <math>(2,4),(3,4),(4,2),</math> and <math>(4,3)</math>. This applies to any other point, thus we can work our way from <math>(0,0)</math> to <math>(4,4)</math>, recording down the number of ways to get to each point. | ||
+ | <math>\begin{tikzpicture} | ||
+ | \draw[step=0.5cm, color=gray] (0,0) grid(4,4); | ||
+ | \end{tikzpicture}</math> | ||
{{AIME box|year=2018|n=II|num-b=7|num-a=9}} | {{AIME box|year=2018|n=II|num-b=7|num-a=9}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 10:12, 24 March 2018
Problem
A frog is positioned at the origin of the coordinate plane. From the point , the frog can jump to any of the points , , , or . Find the number of distinct sequences of jumps in which the frog begins at and ends at .
Solution
We solve this problem by working backwards. Notice, the only points the frog can be on to jump to in one move are and . This applies to any other point, thus we can work our way from to , recording down the number of ways to get to each point.
$
2018 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.