Difference between revisions of "1961 AHSME Problems/Problem 40"
Rockmanex3 (talk | contribs) (Solution to Problem 40) |
Rockmanex3 (talk | contribs) m (→Problem 40) |
||
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
Find the minimum value of <math>\sqrt{x^2+y^2}</math> if <math>5x+12y=60</math>. | Find the minimum value of <math>\sqrt{x^2+y^2}</math> if <math>5x+12y=60</math>. |
Revision as of 14:37, 29 May 2018
Contents
[hide]Problem
Find the minimum value of if .
Solutions
Solution 1
Let , so . Thus, this problem is really finding the shortest distance from the origin to the line .
From the graph, the shortest distance from the origin to the line is the altitude of the right triangle with legs and . The hypotenuse is and the area is , so the altitude is , which is answer choice .
Solution 2
Solve for in the linear equation. Substitute in . To find the minimum, find the vertex of the quadratic. The x-value of the vertex is . Thus, the minimum value is The answer is .
See Also
1961 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 26 |
Followed by Problem 28 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.