Difference between revisions of "1961 AHSME Problems/Problem 40"
Rockmanex3 (talk | contribs) (Better clarity) |
Rockmanex3 (talk | contribs) (→Solutions) |
||
Line 13: | Line 13: | ||
Let <math>x^2 + y^2 = r^2</math>, so <math>r = \sqrt{x^2 + y^2}</math>. Thus, this problem is really finding the shortest distance from the origin to the line <math>5x + 12y = 60</math>. | Let <math>x^2 + y^2 = r^2</math>, so <math>r = \sqrt{x^2 + y^2}</math>. Thus, this problem is really finding the shortest distance from the origin to the line <math>5x + 12y = 60</math>. | ||
− | <asy>import graph; size( | + | <asy>import graph; size(8.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-5.2,xmax=13.2,ymin=-5.2,ymax=6.2; |
pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); | pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); | ||
Revision as of 23:41, 18 June 2018
Contents
[hide]Problem
Find the minimum value of if .
Solutions
Solution 1
Let , so . Thus, this problem is really finding the shortest distance from the origin to the line .
From the graph, the shortest distance from the origin to the line is the altitude to the hypotenuse of the right triangle with legs and . The hypotenuse is and the area is , so the altitude to the hypotenuse is , which is answer choice .
Solution 2
Solve for in the linear equation. Substitute in . To find the minimum, find the vertex of the quadratic. The x-value of the vertex is . Thus, the minimum value is The answer is .
See Also
1961 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 39 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.