Difference between revisions of "2020 AMC 10B Problems/Problem 3"

m (Solution 2)
(Solution 5)
 
(25 intermediate revisions by 10 users not shown)
Line 1: Line 1:
==Problem 3==
+
{{duplicate|[[2020 AMC 10B Problems|2020 AMC 10B #3]] and [[2020 AMC 12B Problems|2020 AMC 12B #3]]}}
  
The ratio of <math>w</math> to <math>x</math> is <math>4:3</math>, the ratio of <math>y</math> to <math>z</math> is <math>3:2</math>, and the ratio of <math>z</math> to <math>x</math> is <math>1:6</math>. What is the ratio of <math>w</math> to <math>y</math>?
+
==Problem==
 +
 
 +
The ratio of <math>w</math> to <math>x</math> is <math>4:3</math>, the ratio of <math>y</math> to <math>z</math> is <math>3:2</math>, and the ratio of <math>z</math> to <math>x</math> is <math>1:6</math>. What is the ratio of <math>w</math> to <math>y?</math>
  
 
<math>\textbf{(A)}\ 4:3 \qquad\textbf{(B)}\ 3:2 \qquad\textbf{(C)}\  8:3 \qquad\textbf{(D)}\ 4:1 \qquad\textbf{(E)}\ 16:3</math>
 
<math>\textbf{(A)}\ 4:3 \qquad\textbf{(B)}\ 3:2 \qquad\textbf{(C)}\  8:3 \qquad\textbf{(D)}\ 4:1 \qquad\textbf{(E)}\ 16:3</math>
  
==Solution 1==
+
==Solution 1 (One Sentence)==
 +
We have <cmath>\frac wy = \frac wx \cdot \frac xz \cdot \frac zy = \frac43\cdot\frac61\cdot\frac23=\frac{16}{3},</cmath> from which <math>w:y=\boxed{\textbf{(E)}\ 16:3}.</math>
 +
 
 +
~MRENTHUSIASM
 +
 
 +
==Solution 2==
 +
 
 +
We need to somehow link all three of the ratios together. We can start by connecting the last two ratios together by multiplying the last ratio by two.
 +
 
 +
<math>z:x=1:6=2:12</math>, and since <math>y:z=3:2</math>, we can link them together to get <math>y:z:x=3:2:12</math>.
 +
 
 +
Finally, since <math>x:w=3:4=12:16</math>, we can link this again to get: <math>y:z:x:w=3:2:12:16</math>, so <math>w:y = \boxed{\textbf{(E)}\ 16:3}</math>.
 +
 
 +
~quacker88
 +
 
 +
==Solution 3==
 +
We have the equations <math>\frac{w}{x}=\frac{4}{3}</math>, <math>\frac{y}{z}=\frac{3}{2}</math>, and <math>\frac{z}{x}=\frac{1}{6}</math>.
 +
Clearing denominators, we have <math>3w = 4x</math>, <math>2y = 3z</math>, and <math>6z = x</math>.
 +
Since we want <math>\frac{w}{y}</math>, we look to find <math>y</math> in terms of <math>x</math> since we know the relationship between <math>x</math> and <math>w</math>.
 +
We begin by multiplying both sides of <math>2y = 3z</math> by two, obtaining <math>4y = 6z</math>. We then substitute that into <math>6z = x</math>
 +
to get <math>4y = x</math> . Now, to be able to substitute this into out first equation, we need to have <math>4x</math> on the RHS.
 +
Multiplying both sides by <math>4</math>, we have <math>16y = 4x</math>.
 +
Substituting this into our first equation, we have <math>3w = 16y</math>, or <math>\frac{w}{y}=\frac{16}{3}</math>, so our answer is <math>\boxed{\textbf{(E)}\ 16:3}</math>.
 +
 
 +
~Binderclips1
 +
 
 +
==Solution 4==
  
 
WLOG, let <math>w=4</math> and <math>x=3</math>.  
 
WLOG, let <math>w=4</math> and <math>x=3</math>.  
Line 13: Line 41:
 
The ratio of <math>y</math> to <math>z</math> is <math>3:2</math>, so <math>\frac{y}{\frac{1}{2}}=\frac{3}{2} \implies y=\frac{3}{4}</math>.  
 
The ratio of <math>y</math> to <math>z</math> is <math>3:2</math>, so <math>\frac{y}{\frac{1}{2}}=\frac{3}{2} \implies y=\frac{3}{4}</math>.  
  
The ratio of <math>w</math> to <math>y</math> is then <math>\frac{4}{\frac{3}{4}}=\frac{16}{3}</math> so our answer is <math>\boxed{\textbf{(E)}\ 16:3}</math> ~quacker88
+
The ratio of <math>w</math> to <math>y</math> is then <math>\frac{4}{\frac{3}{4}}=\frac{16}{3}</math> so our answer is <math>\boxed{\textbf{(E)}\ 16:3}</math>.
 +
 
 +
~quacker88
 +
 
 +
==Solution 5==
 +
We have <math>\frac{w}{x}=\frac{4}{3}, \frac{y}{z}=\frac{3}{2}, \frac{z}{x}=\frac{1}{6}.</math> Find LCD: <math>\frac{w}{x}=\frac{8}{6}, \frac{z}{x}=\frac{1}{6}</math>, we have <math>\frac{w}{z}=\frac{8}{1}.</math> Similarly, <math>\frac{w}{z}=\frac{16}{2}, \frac{y}{z}=\frac{3}{2},</math> so <math>\frac{w}{y}=\frac{16}{3},</math> <math>\boxed{\textbf{(E)}\ 16:3}</math>.
 +
 
 +
~Yelechi
 +
 
 +
==Video Solution (HOW TO THINK CREATIVELY!!!)==
 +
 
 +
https://www.youtube.com/watch?v=QqkNnsNEgiA (for AMC 10)
 +
 
 +
https://youtu.be/Lz6XmHr8tJE (for AMC 12)
 +
 
 +
~Education, the Study of Everything
 +
 
 +
 
  
==Solution 2==
+
==Video Solution==
 +
 
 +
https://youtu.be/Gkm5rU5MlOU (for AMC 10)
 +
 
 +
https://youtu.be/WfTty8Fe5Fo (for AMC 12)
 +
 
 +
 
 +
 
 +
https://youtu.be/y4BbRapJepY
  
We need to somehow link all three of the ratios together. We can start by connecting the last two ratios together by multiplying the last ratio by two.
+
~savannahsolver
  
<math>z:x=1:6=2:12</math>, and since <math>y:z=3:2</math>, we can link them together to get <math>y:z:x=3:2:12</math>.
+
https://youtu.be/wH7xhYxwaFc
  
Finally, since <math>x:w=3:4=12:16</math>, we can link this again to get: <math>y:z:x:w=3:2:12:16</math>, so <math>w:y = \boxed{\textbf{(E)}\ 16:3}</math> ~quacker88
+
~AlexExplains
  
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2020|ab=B|num-b=2|num-a=4}}
 
{{AMC10 box|year=2020|ab=B|num-b=2|num-a=4}}
 +
{{AMC12 box|year=2020|ab=B|num-b=2|num-a=4}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 15:38, 3 November 2024

The following problem is from both the 2020 AMC 10B #3 and 2020 AMC 12B #3, so both problems redirect to this page.

Problem

The ratio of $w$ to $x$ is $4:3$, the ratio of $y$ to $z$ is $3:2$, and the ratio of $z$ to $x$ is $1:6$. What is the ratio of $w$ to $y?$

$\textbf{(A)}\ 4:3 \qquad\textbf{(B)}\ 3:2 \qquad\textbf{(C)}\  8:3 \qquad\textbf{(D)}\ 4:1 \qquad\textbf{(E)}\ 16:3$

Solution 1 (One Sentence)

We have \[\frac wy = \frac wx \cdot \frac xz \cdot \frac zy = \frac43\cdot\frac61\cdot\frac23=\frac{16}{3},\] from which $w:y=\boxed{\textbf{(E)}\ 16:3}.$

~MRENTHUSIASM

Solution 2

We need to somehow link all three of the ratios together. We can start by connecting the last two ratios together by multiplying the last ratio by two.

$z:x=1:6=2:12$, and since $y:z=3:2$, we can link them together to get $y:z:x=3:2:12$.

Finally, since $x:w=3:4=12:16$, we can link this again to get: $y:z:x:w=3:2:12:16$, so $w:y = \boxed{\textbf{(E)}\ 16:3}$.

~quacker88

Solution 3

We have the equations $\frac{w}{x}=\frac{4}{3}$, $\frac{y}{z}=\frac{3}{2}$, and $\frac{z}{x}=\frac{1}{6}$. Clearing denominators, we have $3w = 4x$, $2y = 3z$, and $6z = x$. Since we want $\frac{w}{y}$, we look to find $y$ in terms of $x$ since we know the relationship between $x$ and $w$. We begin by multiplying both sides of $2y = 3z$ by two, obtaining $4y = 6z$. We then substitute that into $6z = x$ to get $4y = x$ . Now, to be able to substitute this into out first equation, we need to have $4x$ on the RHS. Multiplying both sides by $4$, we have $16y = 4x$. Substituting this into our first equation, we have $3w = 16y$, or $\frac{w}{y}=\frac{16}{3}$, so our answer is $\boxed{\textbf{(E)}\ 16:3}$.

~Binderclips1

Solution 4

WLOG, let $w=4$ and $x=3$.

Since the ratio of $z$ to $x$ is $1:6$, we can substitute in the value of $x$ to get $\frac{z}{3}=\frac{1}{6} \implies z=\frac{1}{2}$.

The ratio of $y$ to $z$ is $3:2$, so $\frac{y}{\frac{1}{2}}=\frac{3}{2} \implies y=\frac{3}{4}$.

The ratio of $w$ to $y$ is then $\frac{4}{\frac{3}{4}}=\frac{16}{3}$ so our answer is $\boxed{\textbf{(E)}\ 16:3}$.

~quacker88

Solution 5

We have $\frac{w}{x}=\frac{4}{3}, \frac{y}{z}=\frac{3}{2}, \frac{z}{x}=\frac{1}{6}.$ Find LCD: $\frac{w}{x}=\frac{8}{6}, \frac{z}{x}=\frac{1}{6}$, we have $\frac{w}{z}=\frac{8}{1}.$ Similarly, $\frac{w}{z}=\frac{16}{2}, \frac{y}{z}=\frac{3}{2},$ so $\frac{w}{y}=\frac{16}{3},$ $\boxed{\textbf{(E)}\ 16:3}$.

~Yelechi

Video Solution (HOW TO THINK CREATIVELY!!!)

https://www.youtube.com/watch?v=QqkNnsNEgiA (for AMC 10)

https://youtu.be/Lz6XmHr8tJE (for AMC 12)

~Education, the Study of Everything


Video Solution

https://youtu.be/Gkm5rU5MlOU (for AMC 10)

https://youtu.be/WfTty8Fe5Fo (for AMC 12)


https://youtu.be/y4BbRapJepY

~savannahsolver

https://youtu.be/wH7xhYxwaFc

~AlexExplains

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png