Difference between revisions of "1986 AIME Problems/Problem 4"
m (→Solution 2) |
|||
(14 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Determine <math> | + | Determine <math>3x_4+2x_5</math> if <math>x_1</math>, <math>x_2</math>, <math>x_3</math>, <math>x_4</math>, and <math>x_5</math> satisfy the system of equations below. |
− | <center><math> | + | <center><math>2x_1+x_2+x_3+x_4+x_5=6</math></center> |
− | <center><math> | + | <center><math>x_1+2x_2+x_3+x_4+x_5=12</math></center> |
− | <center><math> | + | <center><math>x_1+x_2+2x_3+x_4+x_5=24</math></center> |
− | <center><math> | + | <center><math>x_1+x_2+x_3+2x_4+x_5=48</math></center> |
− | <center><math> | + | <center><math>x_1+x_2+x_3+x_4+2x_5=96</math></center> |
== Solution == | == Solution == | ||
− | Adding all five [[equation]]s gives us <math>6(x_1 + x_2 + x_3 + x_4 + x_5) = 6(1 + 2 + 4 + 8 + 16)</math> so <math>x_1 + x_2 + x_3 + x_4 + x_5 = 31</math>. Subtracting this from the fourth given equation gives <math>x_4 = 17</math> and subtracting it from the fifth given equation gives <math>x_5 = 65</math>, so our answer is <math>3\cdot17 + 2\cdot65 = 181</math>. | + | Adding all five [[equation]]s gives us <math>6(x_1 + x_2 + x_3 + x_4 + x_5) = 6(1 + 2 + 4 + 8 + 16)</math> so <math>x_1 + x_2 + x_3 + x_4 + x_5 = 31</math>. Subtracting this from the fourth given equation gives <math>x_4 = 17</math> and subtracting it from the fifth given equation gives <math>x_5 = 65</math>, so our answer is <math>3\cdot17 + 2\cdot65 = \boxed{181}</math>. |
+ | |||
+ | == Solution 2 == | ||
+ | |||
+ | Subtracting the first equation from every one of the other equations yields | ||
+ | <cmath>\begin{align*} | ||
+ | x_2-x_1&=6\\ | ||
+ | x_3-x_1&=18\\ | ||
+ | x_4-x_1&=42\\ | ||
+ | x_5-x_1&=90 | ||
+ | \end{align*}</cmath> | ||
+ | Thus | ||
+ | <cmath>\begin{align*} | ||
+ | 2x_1+x_2+x_3+x_4+x_5&=6\\ | ||
+ | 2x_1+(x_1+6)+(x_1+18)+(x_1+42)+(x_1+90)&=6\\ | ||
+ | 6x_1+156&=6\\ | ||
+ | x_1&=-25 | ||
+ | \end{align*}</cmath> | ||
+ | Using the previous equations, | ||
+ | <cmath>3x_4+2x_5=3(x_1+42)+2(x_1+90)=\boxed{181}</cmath> | ||
+ | |||
+ | ~ Nafer | ||
== See also == | == See also == | ||
{{AIME box|year=1986|num-b=3|num-a=5}} | {{AIME box|year=1986|num-b=3|num-a=5}} | ||
+ | * [[AIME Problems and Solutions]] | ||
+ | * [[American Invitational Mathematics Examination]] | ||
+ | * [[Mathematics competition resources]] | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 15:25, 17 November 2019
Contents
Problem
Determine if , , , , and satisfy the system of equations below.
Solution
Adding all five equations gives us so . Subtracting this from the fourth given equation gives and subtracting it from the fifth given equation gives , so our answer is .
Solution 2
Subtracting the first equation from every one of the other equations yields Thus Using the previous equations,
~ Nafer
See also
1986 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
- AIME Problems and Solutions
- American Invitational Mathematics Examination
- Mathematics competition resources
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.