Difference between revisions of "2018 AIME II Problems/Problem 12"
Phoenixfire (talk | contribs) (→Solution 3 (With yet another way to get the middle point)) |
(→Solution 10) |
||
(66 intermediate revisions by 13 users not shown) | |||
Line 2: | Line 2: | ||
Let <math>ABCD</math> be a convex quadrilateral with <math>AB = CD = 10</math>, <math>BC = 14</math>, and <math>AD = 2\sqrt{65}</math>. Assume that the diagonals of <math>ABCD</math> intersect at point <math>P</math>, and that the sum of the areas of triangles <math>APB</math> and <math>CPD</math> equals the sum of the areas of triangles <math>BPC</math> and <math>APD</math>. Find the area of quadrilateral <math>ABCD</math>. | Let <math>ABCD</math> be a convex quadrilateral with <math>AB = CD = 10</math>, <math>BC = 14</math>, and <math>AD = 2\sqrt{65}</math>. Assume that the diagonals of <math>ABCD</math> intersect at point <math>P</math>, and that the sum of the areas of triangles <math>APB</math> and <math>CPD</math> equals the sum of the areas of triangles <math>BPC</math> and <math>APD</math>. Find the area of quadrilateral <math>ABCD</math>. | ||
+ | |||
+ | ==Diagram== | ||
+ | |||
+ | Let <math>AP=x</math> and let <math>PC=\rho x</math>. Let <math>[ABP]=\Delta</math> and let <math>[ADP]=\Lambda</math>. | ||
+ | <asy> | ||
+ | defaultpen(fontsize(14)+0.6); unitsize(12); | ||
+ | |||
+ | real x=11.25; | ||
+ | pair B1=origin, D1=(x,0), C1=IP(CR(B1,14),CR(D1,10)), A1=OP(CR(B1,10),CR(D1,2*sqrt(65))), P1=extension(A1,C1,B1,D1); | ||
+ | |||
+ | pair A=origin, C=(length(C1-A1),0), B=IP(CR(A,10),CR(C,14)), D=OP(CR(A,2*sqrt(65)),CR(C,10)), P=extension(A,C,B,D); | ||
+ | |||
+ | draw(A--B--C--D--A); | ||
+ | draw(A--C^^B--D,gray+0.4); | ||
+ | dot("$A$",A,dir(A-P)); dot("$B$",B,dir(B-P)); dot("$C$",C,dir(C-P)); dot("$D$",D,dir(D-P)); dot("$P$",P,dir(230)); | ||
+ | |||
+ | pen p=fontsize(10); | ||
+ | label("$10$",A--B,up,p); label("$10$", C--D, 2*right,p); label("$14$", B--C, N,p); label("$2\sqrt{65}$", A--D, SW,p); label("$x$", A--P,down,p); label("$\rho x$", P--C,down,p); label("$\Delta$",(A+B+P)/3, right,p); label("$\Lambda$",(A+D+P)/3, right,p); | ||
+ | </asy> | ||
==Solution 1== | ==Solution 1== | ||
+ | |||
+ | Let <math>AP=x</math> and let <math>PC=\rho x</math>. Let <math>[ABP]=\Delta</math> and let <math>[ADP]=\Lambda</math>. We easily get <math>[PBC]=\rho \Delta</math> and <math>[PCD]=\rho\Lambda</math>. | ||
+ | |||
+ | We are given that <math>[ABP] +[PCD] = [PBC]+[ADP]</math>, which we can now write as <cmath>\Delta + \rho\Lambda = \rho\Delta + \Lambda \qquad \Longrightarrow \qquad \Delta -\Lambda = \rho (\Delta -\Lambda).</cmath> Either <math>\Delta = \Lambda</math> or <math>\rho=1</math>. The former would imply that <math>ABCD</math> is a parallelogram, which it isn't; therefore we conclude <math>\rho=1</math> and <math>P</math> is the midpoint of <math>AC</math>. Let <math>\angle BAD = \theta</math> and <math>\angle BCD = \phi</math>. Then <math>[ABCD]=2\cdot [BCD]=140\sin\phi</math>. On one hand, since <math>[ABD]=[BCD]</math>, we have <cmath>\begin{align}\sqrt{65}\sin\theta = 7\sin\phi \quad \implies \quad 16+49\cos^2\phi = 65\cos^2\theta\end{align}</cmath>whereas, on the other hand, using cosine formula to get the length of <math>BD</math>, we get <cmath>10^2+4\cdot 65 - 40\sqrt{65}\cos\theta = 10^2+14^2-280\cos\phi</cmath><cmath>\begin{align}\tag{2}\implies \qquad 65\cos^2\theta = \left(7\cos\phi+ \frac{8}{5}\right)^2\end{align}</cmath>Eliminating <math>\cos\theta</math> in the above two equations and solving for <math>\cos\phi</math> we get<cmath>\cos\phi = \frac{3}{5}\qquad \implies \qquad \sin\phi = \frac{4}{5}</cmath>which finally yields <math>[ABCD]=2\cdot [BCD] = 140\sin\phi = 112</math>. | ||
+ | |||
+ | ==Solution 2== | ||
For reference, <math>2\sqrt{65} \approx 16</math>, so <math>\overline{AD}</math> is the longest of the four sides of <math>ABCD</math>. Let <math>h_1</math> be the length of the altitude from <math>B</math> to <math>\overline{AC}</math>, and let <math>h_2</math> be the length of the altitude from <math>D</math> to <math>\overline{AC}</math>. Then, the triangle area equation becomes | For reference, <math>2\sqrt{65} \approx 16</math>, so <math>\overline{AD}</math> is the longest of the four sides of <math>ABCD</math>. Let <math>h_1</math> be the length of the altitude from <math>B</math> to <math>\overline{AC}</math>, and let <math>h_2</math> be the length of the altitude from <math>D</math> to <math>\overline{AC}</math>. Then, the triangle area equation becomes | ||
− | < | + | <cmath>\frac{h_1}{2}AP + \frac{h_2}{2}CP = \frac{h_1}{2}CP + \frac{h_2}{2}AP \rightarrow \left(h_1 - h_2\right)AP = \left(h_1 - h_2\right)CP \rightarrow AP = CP</cmath> |
+ | |||
+ | What an important finding! Note that the opposite sides <math>\overline{AB}</math> and <math>\overline{CD}</math> have equal length, and note that diagonal <math>\overline{DB}</math> bisects diagonal <math>\overline{AC}</math>. This is very similar to what happens if <math>ABCD</math> were a parallelogram with <math>AB = CD = 10</math>, so let's extend <math>\overline{DB}</math> to point <math>E</math>, such that <math>AECD</math> is a parallelogram. In other words, <cmath>AE = CD = 10</cmath> and <cmath>EC = DA = 2\sqrt{65}</cmath> Now, let's examine <math>\triangle ABE</math>. Since <math>AB = AE = 10</math>, the triangle is isosceles, and <math>\angle ABE \cong \angle AEB</math>. Note that in parallelogram <math>AECD</math>, <math>\angle AED</math> and <math>\angle CDE</math> are congruent, so <math>\angle ABE \cong \angle CDE</math> and thus <cmath>\text{m}\angle ABD = 180^\circ - \text{m}\angle CDB</cmath> Define <math>\alpha := \text{m}\angle CDB</math>, so <math>180^\circ - \alpha = \text{m}\angle ABD</math>. | ||
− | + | We use the Law of Cosines on <math>\triangle DAB</math> and <math>\triangle CDB</math>: | |
− | < | + | <cmath>\left(2\sqrt{65}\right)^2 = 10^2 + BD^2 - 20BD\cos\left(180^\circ - \alpha\right) = 100 + BD^2 + 20BD\cos\alpha</cmath> |
− | < | + | <cmath>14^2 = 10^2 + BD^2 - 20BD\cos\alpha</cmath> |
Subtracting the second equation from the first yields | Subtracting the second equation from the first yields | ||
− | < | + | <cmath>260 - 196 = 40BD\cos\alpha \rightarrow BD\cos\alpha = \frac{8}{5}</cmath> |
− | This means that dropping an altitude from <math>B</math> to some foot <math>Q</math> on <math>\overline{CD}</math> gives <math>DQ = \frac{8}{5}</math> and therefore <math>CQ = \frac{42}{5}</math>. Seeing that <math>CQ = \frac{3}{5}\cdot BC</math>, we conclude that <math>\triangle QCB</math> is a 3-4-5 right triangle, so <math>BQ = \frac{56}{5}</math>. Then, the area of <math>\triangle BCD</math> is <math>\frac{1}{2}\cdot 10 \cdot \frac{56}{5} = 56</math>. Since <math>AP = CP</math>, points <math>A</math> and <math>C</math> are equidistant from <math>\overline{BD}</math>, so < | + | This means that dropping an altitude from <math>B</math> to some foot <math>Q</math> on <math>\overline{CD}</math> gives <math>DQ = \frac{8}{5}</math> and therefore <math>CQ = \frac{42}{5}</math>. Seeing that <math>CQ = \frac{3}{5}\cdot BC</math>, we conclude that <math>\triangle QCB</math> is a 3-4-5 right triangle, so <math>BQ = \frac{56}{5}</math>. Then, the area of <math>\triangle BCD</math> is <math>\frac{1}{2}\cdot 10 \cdot \frac{56}{5} = 56</math>. Since <math>AP = CP</math>, points <math>A</math> and <math>C</math> are equidistant from <math>\overline{BD}</math>, so <cmath>\left[\triangle ABD\right] = \left[\triangle CBD\right] = 56</cmath> and hence <cmath>\left[ABCD\right] = 56 + 56 = \boxed{112}</cmath> -kgator |
− | Just to be complete -- <math> | + | Just to be complete -- <math>h_1</math> and <math>h_2</math> can actually be equal. In this case, <math>AP \neq CP</math>, but <math>BP</math> must be equal to <math>DP</math>. We get the same result. -Mathdummy. |
− | ==Solution | + | ==Solution 3 (Another way to get the middle point)== |
So, let the area of <math>4</math> triangles <math>\triangle {ABP}=S_{1}</math>, <math>\triangle {BCP}=S_{2}</math>, <math>\triangle {CDP}=S_{3}</math>, <math>\triangle {DAP}=S_{4}</math>. Suppose <math>S_{1}>S_{3}</math> and <math>S_{2}>S_{4}</math>, then it is easy to show that <cmath>S_{1}\cdot S_{3}=S_{2}\cdot S_{4}.</cmath> Also, because <cmath>S_{1}+S_{3}=S_{2}+S_{4},</cmath> we will have <cmath>(S_{1}+S_{3})^2=(S_{2}+S_{4})^2.</cmath> So <cmath>(S_{1}+S_{3})^2=S_{1}^2+S_{3}^2+2\cdot S_{1}\cdot S_{3}=(S_{2}+S_{4})^2=S_{2}^2+S_{4}^2+2\cdot S_{2}\cdot S_{4}.</cmath> So <cmath>S_{1}^2+S_{3}^2=S_{2}^2+S_{4}^2.</cmath> So <cmath>S_{1}^2+S_{3}^2-2\cdot S_{1}\cdot S_{3}=S_{2}^2+S_{4}^2-2\cdot S_{2}\cdot S_{4}.</cmath> So <cmath>(S_{1}-S_{3})^2=(S_{2}-S_{4})^2.</cmath> As a result, <cmath>S_{1}-S_{3}=S_{2}-S_{4}.</cmath> Then, we have <cmath>S_{1}+S_{4}=S_{2}+S_{3}.</cmath> Combine the condition <cmath>S_{1}+S_{3}=S_{2}+S_{4},</cmath> we can find out that <cmath>S_{3}=S_{4},</cmath> so <math>P</math> is the midpoint of <math>\overline {AC}</math> | So, let the area of <math>4</math> triangles <math>\triangle {ABP}=S_{1}</math>, <math>\triangle {BCP}=S_{2}</math>, <math>\triangle {CDP}=S_{3}</math>, <math>\triangle {DAP}=S_{4}</math>. Suppose <math>S_{1}>S_{3}</math> and <math>S_{2}>S_{4}</math>, then it is easy to show that <cmath>S_{1}\cdot S_{3}=S_{2}\cdot S_{4}.</cmath> Also, because <cmath>S_{1}+S_{3}=S_{2}+S_{4},</cmath> we will have <cmath>(S_{1}+S_{3})^2=(S_{2}+S_{4})^2.</cmath> So <cmath>(S_{1}+S_{3})^2=S_{1}^2+S_{3}^2+2\cdot S_{1}\cdot S_{3}=(S_{2}+S_{4})^2=S_{2}^2+S_{4}^2+2\cdot S_{2}\cdot S_{4}.</cmath> So <cmath>S_{1}^2+S_{3}^2=S_{2}^2+S_{4}^2.</cmath> So <cmath>S_{1}^2+S_{3}^2-2\cdot S_{1}\cdot S_{3}=S_{2}^2+S_{4}^2-2\cdot S_{2}\cdot S_{4}.</cmath> So <cmath>(S_{1}-S_{3})^2=(S_{2}-S_{4})^2.</cmath> As a result, <cmath>S_{1}-S_{3}=S_{2}-S_{4}.</cmath> Then, we have <cmath>S_{1}+S_{4}=S_{2}+S_{3}.</cmath> Combine the condition <cmath>S_{1}+S_{3}=S_{2}+S_{4},</cmath> we can find out that <cmath>S_{3}=S_{4},</cmath> so <math>P</math> is the midpoint of <math>\overline {AC}</math> | ||
Line 30: | Line 57: | ||
~Solution by <math>BladeRunnerAUG</math> (Frank FYC) | ~Solution by <math>BladeRunnerAUG</math> (Frank FYC) | ||
− | ==Solution | + | ==Solution 4 (With yet another way to get the middle point)== |
− | Using the formula for the area of a triangle, <cmath> | + | Denote <math>\angle APB</math> by <math>\alpha</math>. Then <math>\sin(\angle APB)=\sin \alpha = \sin(\angle APD)</math>. |
− | + | Using the formula for the area of a triangle, we get <cmath>\frac{1}{2} (AP\cdot BP+ CP\cdot DP)\sin\alpha=\frac{1}{2}(AP\cdot DP+ CP\cdot BP)\sin\alpha , </cmath> | |
+ | so <cmath>(AP-CP)(BP-DP)=0</cmath> | ||
Hence <math>AP=CP</math> (note that <math>BP=DP</math> makes no difference here). | Hence <math>AP=CP</math> (note that <math>BP=DP</math> makes no difference here). | ||
− | Now, assume that <math>AP=CP=x</math>,<math>BP=y</math>, and <math>DP=z</math>. Using the cosine rule for | + | Now, assume that <math>AP=CP=x</math>, <math>BP=y</math>, and <math>DP=z</math>. Using the cosine rule for <math>\triangle APB</math> and <math>\triangle BPC</math>, it is clear that <cmath>x^2+y^2-100=2 xy \cdot \cos{APB}=-(2 xy \cdot \cos{(\pi-CPB)})=-(x^2+y^2-196) </cmath> or <cmath>\begin{align}x^2+y^2=148\end{align}.</cmath> |
− | + | Likewise, using the cosine rule for triangles <math>APD</math> and <math>CPD</math>, <cmath>\begin{align}\tag{2}x^2+z^2=180\end{align}.</cmath> It follows that <cmath>\begin{align}\tag{3}z^2-y^2=32\end{align}.</cmath> Since <math>\sin\alpha=\sqrt{1-\cos^2\alpha}</math>, <cmath>\sqrt{1-\frac{(x^2+y^2-100)^2}{4x^2y^2}}=\sqrt{1-\frac{(x^2+z^2-260)^2}{4x^2z^2}}</cmath> which simplifies to <cmath>\frac{48^2}{y^2}=\frac{80^2}{z^2} \qquad \Longrightarrow \qquad 5y=3z.</cmath> Plugging this back to equations <math>(1)</math>, <math>(2)</math>, and <math>(3)</math>, it can be solved that <math>x=\sqrt{130},y=3\sqrt{2},z=5\sqrt{2}</math>. Then, the area of the quadrilateral is <cmath>x(y+z)\sin\alpha=\sqrt{130}\cdot8\sqrt{2}\cdot\frac{14}{\sqrt{260}}=\boxed{112}</cmath> | |
− | < | ||
--Solution by MicGu | --Solution by MicGu | ||
− | ==Solution | + | ==Solution 5== |
As in all other solutions, we can first find that either <math>AP=CP</math> or <math>BP=DP</math>, but it's an AIME problem, we can take <math>AP=CP</math>, and assume the other choice will lead to the same result (which is true). | As in all other solutions, we can first find that either <math>AP=CP</math> or <math>BP=DP</math>, but it's an AIME problem, we can take <math>AP=CP</math>, and assume the other choice will lead to the same result (which is true). | ||
− | From <math>AP=CP</math>, we have <math>[DAP]=[DCP]</math>, <math>[BAP]=[BCP] | + | From <math>AP=CP</math>, we have <math>[DAP]=[DCP]</math>, and <math>[BAP]=[BCP] \implies [ABD] = [CBD]</math>, therefore, |
− | <cmath> | + | <cmath>\begin{align} |
− | By Law of | + | \nonumber \frac 12 \cdot AB\cdot AD\sin A &= \frac 12 \cdot BC\cdot CD\sin C \\ |
− | <cmath>10^2+14^2-2 | + | \Longrightarrow \hspace{1in} 7\sin C &= \sqrt{65}\sin A |
− | + | \end{align}</cmath> | |
− | Square (1) and (2), add them, | + | By Law of Cosines, |
− | <cmath>( | + | <cmath>\begin{align} |
− | Solve, <math>\cos C = 3/5 | + | \nonumber 10^2+14^2-2\cdot 10\cdot 14\cos C &= 10^2+4\cdot 65-2\cdot 10\cdot 2\sqrt{65}\cos A \\ |
− | <cmath>[ABCD] = 2[BCD] = BC | + | \Longrightarrow \hspace{1in} -\frac 85 - 7\cos C &= \sqrt{65}\cos A \tag{2} |
+ | \end{align}</cmath> | ||
+ | Square <math>(1)</math> and <math>(2)</math>, and add them, to get | ||
+ | <cmath>\left(\frac 85\right)^2 + 2\cdot \frac 85 \cdot 7\cos C + 7^2 = 65 </cmath> | ||
+ | Solve, <math>\cos C = 3/5 \implies \sin C = 4/5</math>, | ||
+ | <cmath>[ABCD] = 2[BCD] = BC\cdot CD\cdot \sin C = 14\cdot 10\cdot \frac 45 = \boxed{112}</cmath> | ||
-Mathdummy | -Mathdummy | ||
+ | |||
+ | ==Solution 6== | ||
+ | Either <math>PA=PC</math> or <math>PD=PB</math>. Let <math>PD=PB=s</math>. Applying Stewart's Theorem on <math>\triangle ABD</math> and <math>\triangle BCD</math>, dividing by <math>2s</math> and rearranging, <cmath>\tag{1}CP^2+s^2=148</cmath> <cmath>\tag{2}AP^2+s^2=180</cmath> Applying Stewart on <math>\triangle CAB</math> and <math>\triangle CAD</math>, <cmath>\tag{3} 5CP^2=3AP^2</cmath> Substituting equations 1 and 2 into 3 and rearranging, <math>s=BP=PD\sqrt{130}, CP=3\sqrt{2}, PA=5\sqrt{2}</math> . By Law of Cosines on <math>\triangle APB</math>, <math>\cos(\angle APB)=\frac{4\sqrt{65}}{65}</math> so <math>\sin(\angle APB)=\sin(\angle BPC)=\sin(\angle CPD)=\sin(\angle DPA)=\frac{7\sqrt{65}}{65}</math>. Using <math>[\triangle ABC]=\frac{ab\sin(\angle C)}{2}</math> to find unknown areas, <math>[ABCD]=[\triangle APB]+[\triangle BPC]+[\triangle CPD]+[\triangle DPA]=\boxed{112}</math>. | ||
+ | |||
+ | -Solution by Garrett | ||
+ | |||
+ | ==Solution 7== | ||
+ | Now we prove P is the midpoint of <math>BD</math>. Denote the height from <math>B</math> to <math>AC</math> as <math>h_1</math>, height from <math>D</math> to <math>AC</math> as <math>h_2</math>.According to the problem, <math>AP* h_1 +CP* h_2 =CP* h_1 +AP* h_2 </math> implies <math> h_1 (AP-CP)= h_2 (AP-CP), h_1 = h_2 </math>. Then according to basic congruent triangles we get <math>BP=DP</math> | ||
+ | Firstly, denote that <math>CP=a,BP=b,CP=c,AP=d</math>. Applying Stewart theorem, getting that <math>100c+196b=(b+c)(bc+a^2); 100b+260c=(b+c)(bc+c^2); 100c+196b=100b+260c, 3b=5c</math>, denote <math>b=5x,c=3x</math> | ||
+ | Applying Stewart Theorem, getting <math>260a+100a=2a(a^2+25x^2); 196a+100a=2a(9x^2+a^2)</math> solve for a, getting <math>a=\sqrt{130},AP=5\sqrt{2}; CP=3\sqrt{2}</math> | ||
+ | Now everything is clear, we can find <math>cos\angle{BPA}=\frac{4}{\sqrt{65}}</math> using LOC, <math>sin\angle{BPA}=\frac{7\sqrt{65}}{65}</math>, the whole area is <math>\sqrt{130}*8\sqrt{2}*\frac{7\sqrt{65}}{65}=\boxed{112}</math> | ||
+ | |||
+ | ~bluesoul | ||
+ | |||
+ | ==Solution 8 (Simple Geometry)== | ||
+ | [[File:AIME-II-2018-12.png|400px|right]] | ||
+ | <math>BP = PD</math> as in another solutions. | ||
+ | |||
+ | Let <math>D'</math> be the reflection of <math>D</math> across <math>C</math>. | ||
+ | Let points <math>E, E',</math> and <math>H</math> be the foot of perpendiculars on <math>AC</math> from <math>D,D'</math>, and <math>B</math> respectively. | ||
+ | <cmath>\begin{align*} | ||
+ | &\qquad AB = CD = CD', \quad \textrm{and} \quad BH = DE = D'E' \\ | ||
+ | \Rightarrow &\qquad \triangle ABH = \triangle CDE = \triangle CD'E' \\ | ||
+ | \Rightarrow &\qquad \angle BAC = \angle ACD' \\ | ||
+ | \Rightarrow &\qquad \triangle ABC = \triangle AD'C \\ | ||
+ | \Rightarrow &\qquad BC = AD'. | ||
+ | \end{align*}</cmath> | ||
+ | The area of quadrilateral <math>ABCD</math> is equal to the area of triangle <math>ADD'</math> with sides <math>AD' = 14, AD = 2\sqrt{65}, DD' = 2 \cdot 10 = 20</math>. | ||
+ | The semiperimeter is <math>s = 17 + \sqrt{65},</math> the area <cmath>[ADD'] = \sqrt {(17 + \sqrt{65}) (17 - \sqrt{65})(3 + \sqrt{65})(\sqrt{65}-3)} = \sqrt{(289 – 65)\cdot(65-9)} =\sqrt{56 \cdot 4 \cdot 56} = \boxed{112}.</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Solution 9 (Mindless Law of Cosines Bash)== | ||
+ | |||
+ | Use your favorite method to get that <math>P</math> is the midpoint of one of the two diagonals (suppose it's the midpoint of <math>\overline{AC}</math>). From here, let <math>x=AP=PC, y=BP, z=PD, a=\cos\theta</math> where <math>\theta</math> is the angle that the diagonals make. Then we have a system of four equations: | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | x^2+y^2+2xya &= 100 \\ | ||
+ | z^2+x^2+2xza &= 100 \\ | ||
+ | x^2+y^2-2xya &= 196 \\ | ||
+ | x^2+z^2-2xza &= 260 \\ | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | From these equations we get that | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | xya &= -24 \\ | ||
+ | xza &= -40 \\ | ||
+ | x^2+y^2-48 &= 10 \\ | ||
+ | x^2+z^2-80 &= 10 | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | From here we can see that <math>\frac{z}{y}={5}{3}, z^2-y^2=32,</math> so <math>z=5\sqrt{2}, y=3\sqrt{2}.</math> Furthermore, this implies <math>x=\sqrt{130}</math> and <math>xa=-4\sqrt{2},</math> which implies <math>a=\cos\theta=\frac{4}{\sqrt{65}}.</math> Then note that the area of the quadrilateral is <cmath>\frac{1}{2}\sin\theta (xy+xz+xz+xy)=\sin\theta (\sqrt{130}\cdot 3\sqrt{2}+\sqrt{130} \cdot 5\sqrt{2})=7\cdot (3\cdot 2+5\cdot 2)=7(6+10)=7\cdot 16=\boxed{112}.</cmath> | ||
+ | |||
+ | ~Dhillonr25 | ||
+ | ==Solution 10== | ||
+ | Note that <math>\angle APB = \angle CPD = 180-\angle APD = 180-\angle BPC.</math>(All angles are in degrees) | ||
+ | Since <math>\sin(\theta)=\sin(180-\theta),</math> we can use sine area formula to get the following(after some simplifying steps): | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | BP \times AP + CP \times DP = BP \times PC + AP \times PD. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | For convenience, let <math>AP=a, BP=b, CP=c,DP=d.</math> The above equation simplifies to: | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | ab + cd = bc + ad | ||
+ | \\ab-ad+cd-bc=0 | ||
+ | \\a(b-d)-c(b-d)=0 | ||
+ | \\(a-c)(b-d)=0 | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | From here, we see that <math>a=c</math> or <math>b=d</math>. Without loss of generality, let <math>a=c</math>. Since triangles <math>ABP</math> and <math>CDP</math> are obviously not congruent, we see that one triangle is obtuse and the other one is acute.(Refer to the diagram) However, if we drop perpendiculars from <math>B</math> to <math>AC</math> and <math>D</math> to <math>AC</math>, we do get congruent triangles. If the foot of the perpendicular from <math>B</math> is <math>M</math>, and the foot of the perpendicular from <math>D</math> is <math>N</math>, then right triangle <math>BMP</math> is congruent to right triangle <math>DNP</math>. | ||
+ | From here, we see that the altitudes of triangles <math>ABC</math> and <math>ADC</math> to <math>AC</math> are equal. Since they share base <math>AC</math>, their areas are equal. We can use Heron's formula. To not have any fractions, let <math>AC=2x.</math> | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \sqrt{(12+x)(12-x)(x+2)(x-2)}=\sqrt{5+\sqrt{65}+x)(5+\sqrt{65}-x)(5-\sqrt{65}+x)(\sqrt{65}-5+x)} | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Even though this looks bad at first, it actually isn't too complicated to simplify. Expanding the differences of squares and simplifying completely, we get <math>x^2=32.</math> Plugging this <math>x</math> back into the Heron's formula, we get that the area of <math>ABC</math>(or <math>ADC</math>) is <math>56</math>. Since these triangles have equal area, the area of the quadrilateral is <math>2 \times 56 = \boxed{112}</math>, and we are done. <math>\blacksquare</math> | ||
+ | |||
+ | ~ewei12 | ||
+ | |||
+ | ==Solution 11== | ||
+ | [[File:2018_AIME_II_Problem_12_Parallelogram.png|400px|right]] | ||
+ | |||
+ | Use any method to derive that <math>P</math> is the midpoint of <math>A</math> and <math>C</math>. Now, either construct a parallelogram with as shown in the diagram to the right, or use law of sines. We will take the parallelogram route here, but the same thing can be done with law of sines on triangles <math>\triangle \textnormal{ABP}</math> and <math>\triangle \textnormal{CPD}</math>. Reflect <math>D</math> across <math>P</math> to get <math>D'</math>. Since <math>CD = AD' = AB = 10</math>, <math>\triangle \textnormal{ABD'}</math> is isosceles. Thus, <math>\angle AD'B = \angle ABD'</math>, and because <math>ADCD'</math> is a parallelogram (since <math>AP = PC</math> and <math>DP = PD'</math>), <math>\angle AD'B = \angle BDC = \angle ABD'</math>. So, <math>\angle ABD = 180 - \angle ABD' = 180 - \angle BDC</math>. Now, apply law of cosines on <math>\triangle \textnormal{ABD}</math> and <math>\triangle \textnormal{CDB}</math>. We get: | ||
+ | \begin{align} | ||
+ | 100 + BD^2 - 20BD \cos{\angle ABD} &= 100 + BD^2 - 20 BD \cos {(180 - \angle BDC)} = \\ | ||
+ | 100 + BD^2 + 20 BD \cos{\angle BDC} &= 260 \\ | ||
+ | &\textnormal{and} \\ | ||
+ | 100 + BD^2 - 20 BD \cos{\angle BDC} &= 196 \\ | ||
+ | \textnormal{summing }&\textnormal{and simplifying,} \\ | ||
+ | BD &= 8\sqrt{2} | ||
+ | \end{align} | ||
+ | Then, applying law of cosines on <math>\triangle \textnormal{BCD}</math> again, we obtain | ||
+ | <cmath> 100 + 196 - 280 \cos{\angle BCD} = BD^2 = 128 \implies \cos{\angle BCD} = \frac{3}{5} \implies \sin{\angle BCD} = \frac{4}{5}</cmath> | ||
+ | Since <math>AP = PD</math>, <math>[ABD] = [BCD] \implies [ABCD] = [ABD] + [BCD] = 2[BCD]</math>. Thus, <math>[ABCD] = 2[BCD] = 2 \cdot \frac{1}{2} \cdot 10 \cdot 14 \sin{\angle BCD} = 140 \cdot \frac{4}{5} = \boxed{112}</math>. | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Crazyvideogamez CrazyVideoGamez] | ||
+ | |||
+ | ==Video Solution by MOP 2024== | ||
+ | https://youtube.com/watch?v=2BsYR1dJn9c | ||
+ | |||
+ | ~r00tsOfUnity | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2018|n=II|num-b=11|num-a=13}} | {{AIME box|year=2018|n=II|num-b=11|num-a=13}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 16:57, 30 August 2024
Contents
- 1 Problem
- 2 Diagram
- 3 Solution 1
- 4 Solution 2
- 5 Solution 3 (Another way to get the middle point)
- 6 Solution 4 (With yet another way to get the middle point)
- 7 Solution 5
- 8 Solution 6
- 9 Solution 7
- 10 Solution 8 (Simple Geometry)
- 11 Solution 9 (Mindless Law of Cosines Bash)
- 12 Solution 10
- 13 Solution 11
- 14 Video Solution by MOP 2024
- 15 See Also
Problem
Let be a convex quadrilateral with , , and . Assume that the diagonals of intersect at point , and that the sum of the areas of triangles and equals the sum of the areas of triangles and . Find the area of quadrilateral .
Diagram
Let and let . Let and let .
Solution 1
Let and let . Let and let . We easily get and .
We are given that , which we can now write as Either or . The former would imply that is a parallelogram, which it isn't; therefore we conclude and is the midpoint of . Let and . Then . On one hand, since , we have whereas, on the other hand, using cosine formula to get the length of , we get Eliminating in the above two equations and solving for we getwhich finally yields .
Solution 2
For reference, , so is the longest of the four sides of . Let be the length of the altitude from to , and let be the length of the altitude from to . Then, the triangle area equation becomes
What an important finding! Note that the opposite sides and have equal length, and note that diagonal bisects diagonal . This is very similar to what happens if were a parallelogram with , so let's extend to point , such that is a parallelogram. In other words, and Now, let's examine . Since , the triangle is isosceles, and . Note that in parallelogram , and are congruent, so and thus Define , so .
We use the Law of Cosines on and :
Subtracting the second equation from the first yields
This means that dropping an altitude from to some foot on gives and therefore . Seeing that , we conclude that is a 3-4-5 right triangle, so . Then, the area of is . Since , points and are equidistant from , so and hence -kgator
Just to be complete -- and can actually be equal. In this case, , but must be equal to . We get the same result. -Mathdummy.
Solution 3 (Another way to get the middle point)
So, let the area of triangles , , , . Suppose and , then it is easy to show that Also, because we will have So So So So As a result, Then, we have Combine the condition we can find out that so is the midpoint of
~Solution by (Frank FYC)
Solution 4 (With yet another way to get the middle point)
Denote by . Then . Using the formula for the area of a triangle, we get so Hence (note that makes no difference here). Now, assume that , , and . Using the cosine rule for and , it is clear that or Likewise, using the cosine rule for triangles and , It follows that Since , which simplifies to Plugging this back to equations , , and , it can be solved that . Then, the area of the quadrilateral is --Solution by MicGu
Solution 5
As in all other solutions, we can first find that either or , but it's an AIME problem, we can take , and assume the other choice will lead to the same result (which is true).
From , we have , and , therefore, By Law of Cosines, Square and , and add them, to get Solve, , -Mathdummy
Solution 6
Either or . Let . Applying Stewart's Theorem on and , dividing by and rearranging, Applying Stewart on and , Substituting equations 1 and 2 into 3 and rearranging, . By Law of Cosines on , so . Using to find unknown areas, .
-Solution by Garrett
Solution 7
Now we prove P is the midpoint of . Denote the height from to as , height from to as .According to the problem, implies . Then according to basic congruent triangles we get Firstly, denote that . Applying Stewart theorem, getting that , denote Applying Stewart Theorem, getting solve for a, getting Now everything is clear, we can find using LOC, , the whole area is
~bluesoul
Solution 8 (Simple Geometry)
as in another solutions.
Let be the reflection of across . Let points and be the foot of perpendiculars on from , and respectively. The area of quadrilateral is equal to the area of triangle with sides . The semiperimeter is the area
vladimir.shelomovskii@gmail.com, vvsss
Solution 9 (Mindless Law of Cosines Bash)
Use your favorite method to get that is the midpoint of one of the two diagonals (suppose it's the midpoint of ). From here, let where is the angle that the diagonals make. Then we have a system of four equations:
From these equations we get that
From here we can see that so Furthermore, this implies and which implies Then note that the area of the quadrilateral is
~Dhillonr25
Solution 10
Note that (All angles are in degrees) Since we can use sine area formula to get the following(after some simplifying steps): For convenience, let The above equation simplifies to: From here, we see that or . Without loss of generality, let . Since triangles and are obviously not congruent, we see that one triangle is obtuse and the other one is acute.(Refer to the diagram) However, if we drop perpendiculars from to and to , we do get congruent triangles. If the foot of the perpendicular from is , and the foot of the perpendicular from is , then right triangle is congruent to right triangle . From here, we see that the altitudes of triangles and to are equal. Since they share base , their areas are equal. We can use Heron's formula. To not have any fractions, let Even though this looks bad at first, it actually isn't too complicated to simplify. Expanding the differences of squares and simplifying completely, we get Plugging this back into the Heron's formula, we get that the area of (or ) is . Since these triangles have equal area, the area of the quadrilateral is , and we are done.
~ewei12
Solution 11
Use any method to derive that is the midpoint of and . Now, either construct a parallelogram with as shown in the diagram to the right, or use law of sines. We will take the parallelogram route here, but the same thing can be done with law of sines on triangles and . Reflect across to get . Since , is isosceles. Thus, , and because is a parallelogram (since and ), . So, . Now, apply law of cosines on and . We get: \begin{align} 100 + BD^2 - 20BD \cos{\angle ABD} &= 100 + BD^2 - 20 BD \cos {(180 - \angle BDC)} = \\ 100 + BD^2 + 20 BD \cos{\angle BDC} &= 260 \\ &\textnormal{and} \\ 100 + BD^2 - 20 BD \cos{\angle BDC} &= 196 \\ \textnormal{summing }&\textnormal{and simplifying,} \\ BD &= 8\sqrt{2} \end{align} Then, applying law of cosines on again, we obtain Since , . Thus, .
Video Solution by MOP 2024
https://youtube.com/watch?v=2BsYR1dJn9c
~r00tsOfUnity
See Also
2018 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.