Difference between revisions of "2017 AMC 8 Problems/Problem 19"

(Solution 3)
m (Solution 1)
 
(25 intermediate revisions by 13 users not shown)
Line 1: Line 1:
==Problem==
+
wertesryrtutyrudtu
For any positive integer <math>M</math>, the notation <math>M!</math> denotes the product of the integers <math>1</math> through <math>M</math>. What is the largest integer <math>n</math> for which <math>5^n</math> is a factor of the sum <math>98!+99!+100!</math> ?
 
 
 
<math>\textbf{(A) }23\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27</math>
 
  
 
==Solution 1==
 
==Solution 1==
Factoring out <math>98!+99!+100!</math>, we have <math>98!(1+99+99*100)</math> which is <math>98!(10000)</math> Next, <math>98!</math> has <math>\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22</math> factors of <math>5</math>. The <math>19</math> is because of all the multiples of <math>5</math>. Now <math>10,000</math> has <math>4</math> factors of <math>5</math>, so there are a total of <math>22 + 4 = \boxed{\textbf{(D)}\ 26}</math> factors of <math>5</math>.
+
Factoring out <math>98!+99!+100!</math>, we have <math>98! (1+99+99*100)</math>, which is <math>98! (10000)</math>. Next, <math>98!</math> has <math>\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22</math> factors of <math>5</math>. The <math>19</math> is because of all the multiples of <math>5</math>.The <math>3</math> is because of all the multiples of <math>25</math>. Now, <math>10,000</math> has <math>4</math> factors of <math>5</math>, so there are a total of <math>22 + 4 = \boxed{\textbf{(D)}\ 26}</math> factors of <math>5</math>.
 
 
==Solution 2==
 
The number of <math>5</math>'s in the factorization of <math>98! + 99! + 100!</math> is the same as the number of trailing zeroes. The number of zeroes is taken by the floor value of each number divided by <math>5</math>, until you can't divide by <math>5</math> anymore. Factorizing <math>98! + 99! + 100!</math>, you get <math>98!(1+99+9900)=98!(10000)</math>. To find the number of trailing zeroes in 98!, we do <math>\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{19}{5}\right\rfloor= 19 + 3=22</math>. Now since <math>10000</math> has 4 zeroes, we add <math>22 + 4</math>  to get <math>\boxed{\textbf{(D)}\ 26}</math> factors of <math>5</math>.
 
 
 
==Solution 3==
 
We can rewrite the expression as <math>98!+99!+100!=98!(1+99+99\cdot100)=98!(100+99\cdot100)=98!\cdot10,000</math>.
 
The exponent of <math>5</math> in <math>10,000</math> is <math>4</math>. Onto the <math>98!</math> part.
 
 
 
Remember that <math>98!</math> is the product of the integers from 1 to 98. Among these, there are multiples of <math>5</math> and multiples of <math>25</math>.
 
The number of multiples of <math>5</math> below or equal to <math>98</math> is <math>\left\lfloor\frac{98}{5}\right\rfloor</math> (try to see why), which is <math>19</math>. Every such number has a factor of <math>5</math>, so they contribute <math>1</math> to the total each. So these numbers contribute <math>19</math> to the exponent of <math>5</math> in <math>98!</math>.
 
 
 
However, we forgot about multiples of <math>25</math>. Using similar logic, we have <math>\left\lfloor\frac{98}{25}\right\rfloor=3</math>, so there are 3 multiples of 25 in this range. Multiples of 25 contribute 2 to the total each. We already counted 1 of 2 contributions while counting multiples of 5. So we need to add another 1 to the exponent of 5 for every multiple of 25. So these numbers contribute 3 to the exponent of 5 in <math>98!</math>.
 
 
 
 
 
We thus have that the exponent of <math>5</math> in <math>98!</math> is <math>19 + 3 = 22</math>, and so our answer is <math>22 + 4 = 26 \longrightarrow \boxed{(D)26}</math>.
 
 
 
~Math4Life2020
 
 
 
== Video Solution ==
 
https://youtu.be/HISL2-N5NVg?t=817
 
  
~ pi_is_3.14
+
~CHECKMATE2021
  
==See Also==
+
Note: Can you say what formula this uses? most AMC 8 test takers won't know it. Also, can someone unvandalize this page?
{{AMC8 box|year=2017|num-b=18|num-a=20}}
 
  
{{MAA Notice}}
+
==Video Solution (CREATIVE THINKING + ANALYSIS!!!)==
 +
https:/90ijn bidxrfgv

Latest revision as of 20:23, 13 June 2024

wertesryrtutyrudtu

Solution 1

Factoring out $98!+99!+100!$, we have $98! (1+99+99*100)$, which is $98! (10000)$. Next, $98!$ has $\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22$ factors of $5$. The $19$ is because of all the multiples of $5$.The $3$ is because of all the multiples of $25$. Now, $10,000$ has $4$ factors of $5$, so there are a total of $22 + 4 = \boxed{\textbf{(D)}\ 26}$ factors of $5$.

~CHECKMATE2021

Note: Can you say what formula this uses? most AMC 8 test takers won't know it. Also, can someone unvandalize this page?

Video Solution (CREATIVE THINKING + ANALYSIS!!!)

https:/90ijn bidxrfgv