Difference between revisions of "1971 AHSME Problems/Problem 21"

(Created page with "== Problem == If <math>\log_2(\log_3(\log_4 x))=\log_3(\log_4(\log_2 y))=\log_4(\log_2(\log_3 z))=0</math>, then the sum <math>x+y+z</math> is equal to <math>\textbf{(A) }50...")
 
m (see also, boxed answer)
 
Line 19: Line 19:
 
Therefore, <math>x + y + z = 89.</math>
 
Therefore, <math>x + y + z = 89.</math>
  
The answer is <math>\textbf{(C)}.</math>
+
The answer is <math>\boxed{\textbf{(C) }89}.</math>
  
 
-edited by coolmath34
 
-edited by coolmath34
 +
 +
== See Also ==
 +
{{AHSME 35p box|year=1971|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Latest revision as of 08:58, 5 August 2024

Problem

If $\log_2(\log_3(\log_4 x))=\log_3(\log_4(\log_2 y))=\log_4(\log_2(\log_3 z))=0$, then the sum $x+y+z$ is equal to

$\textbf{(A) }50\qquad \textbf{(B) }58\qquad \textbf{(C) }89\qquad \textbf{(D) }111\qquad  \textbf{(E) }1296$

Solution

If $\log_{x}{n}=0,$ then $n = 1.$ So, we can rewrite this equation: \[(\log_3(\log_4 x))=(\log_4(\log_2 y))=(\log_2(\log_3 z))=1\]

Solve individually for each variable. \[x = 4^3 = 64\] \[y = 2^4 = 16\] \[z = 3^2 = 9\] Therefore, $x + y + z = 89.$

The answer is $\boxed{\textbf{(C) }89}.$

-edited by coolmath34

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png