Difference between revisions of "2017 AMC 8 Problems/Problem 18"

(Solution 1)
 
(17 intermediate revisions by 8 users not shown)
Line 11: Line 11:
 
<asy>draw((0,0)--(2.4,3.6)--(0,5)--(12,0)--(0,0)); draw((0,0)--(0,5)); label("$B$", (0, 0), SW); label("$A$", (12, 0), ESE); label("$C$", (2.4, 3.6), SE); label("$D$", (0, 5), N);</asy>  
 
<asy>draw((0,0)--(2.4,3.6)--(0,5)--(12,0)--(0,0)); draw((0,0)--(0,5)); label("$B$", (0, 0), SW); label("$A$", (12, 0), ESE); label("$C$", (2.4, 3.6), SE); label("$D$", (0, 5), N);</asy>  
  
We can see that <math>\triangle BCD</math> is a 3-4-5 right triangle. We can also see that <math>\triangle BDA</math> is a right triangle, by the 5-12-13 Pythagorean triple. With these lengths, we can solve the problem. The area of <math>\triangle BDA</math> is <math>\frac{5\cdot 12}{2}</math>, and the area of the smaller 3-4-5 triangle is <math>\frac{3\cdot 4}{2}</math>. Thus, the area of quadrialteral <math>ABCD</math> is <math>30-6 = \boxed{\textbf{(B)}\ 24}.</math>
+
We can see that <math>\triangle BCD</math> is a 3-4-5 right triangle. We can also see that <math>\triangle BDA</math> is a right triangle, by the 5-12-13 Pythagorean triple. With these lengths, we can solve the problem. The area of <math>\triangle BDA</math> is <math>\frac{5\cdot 12}{2}</math>, and the area of <math>\triangle BCD</math> is <math>\frac{3\cdot 4}{2}</math>. Thus, the area of quadrilateral <math>ABCD</math> is <math>30-6 = \boxed{\textbf{(B)}\ 24}.</math>
 +
 
 +
~CHECKMATE2021
  
 
==Solution 2==
 
==Solution 2==
<math>\triangle BCD</math> is a 3-4-5 right triangle. Then we can use Heron's formula to resolve the problem. The area of <math>\triangle ABD</math> whose sides have lengths 5-12-13 is \sqrt {s(s-5)(s-12)(s-13)}. S is the semi-perimeter of the triangle, <math>s=(5+12+13)/2= 15</math>. Then the area is \sqrt {15(15-5)(15-12)(15-13)}= 30<math>. So </math>ABCD<math> is </math>30-6 = \boxed{\textbf{(B)}\ 24}.$
+
<math>\triangle BCD</math> is a 3-4-5 right triangle. So the area of <math>\triangle BCD</math> is 6. Then we can use Heron's formula to compute the area of <math>\triangle ABD</math> whose sides have lengths 5,12,and 13. The area of <math>\triangle ABD</math> = <math>\sqrt{s(s-5)(s-12)(s-13)}</math> , where s is the semi-perimeter of the triangle, that is <math>s=(5+12+13)/2=15.</math> Thus, the area of <math>\triangle ABD</math> is 30, so the area of <math>ABCD</math> is <math>30-6 = \boxed{\textbf{(B)}\ 24}.</math> ---LarryFlora
 +
 
 +
==Video Solution (CREATIVE THINKING + ANALYSIS!!!)==
 +
https://youtu.be/ZYmCHlMBuIQ
 +
 
 +
~Education, the Study of Everything
  
 
==Video Solution==
 
==Video Solution==
https://youtu.be/6yrwfRMV-5k
+
https://www.youtube.com/watch?v=DU95-maui9U&ab_channel=WhyMath (http://youtube/DU95-maui9U)
 +
 
 +
~savannahsolver
 +
 
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/51K3uCzntWs?t=2010
  
https://youtu.be/tJm9KqYG4fU?t=2812
+
~ pi_is_3.14
  
 
==See Also==
 
==See Also==

Latest revision as of 16:37, 21 January 2024

Problem

In the non-convex quadrilateral $ABCD$ shown below, $\angle BCD$ is a right angle, $AB=12$, $BC=4$, $CD=3$, and $AD=13$. What is the area of quadrilateral $ABCD$?

[asy]draw((0,0)--(2.4,3.6)--(0,5)--(12,0)--(0,0)); label("$B$", (0, 0), SW); label("$A$", (12, 0), ESE); label("$C$", (2.4, 3.6), SE); label("$D$", (0, 5), N);[/asy]

$\textbf{(A) }12 \qquad \textbf{(B) }24 \qquad \textbf{(C) }26 \qquad \textbf{(D) }30 \qquad \textbf{(E) }36$

Solution 1

We first connect point $B$ with point $D$.

[asy]draw((0,0)--(2.4,3.6)--(0,5)--(12,0)--(0,0)); draw((0,0)--(0,5)); label("$B$", (0, 0), SW); label("$A$", (12, 0), ESE); label("$C$", (2.4, 3.6), SE); label("$D$", (0, 5), N);[/asy]

We can see that $\triangle BCD$ is a 3-4-5 right triangle. We can also see that $\triangle BDA$ is a right triangle, by the 5-12-13 Pythagorean triple. With these lengths, we can solve the problem. The area of $\triangle BDA$ is $\frac{5\cdot 12}{2}$, and the area of $\triangle BCD$ is $\frac{3\cdot 4}{2}$. Thus, the area of quadrilateral $ABCD$ is $30-6 = \boxed{\textbf{(B)}\ 24}.$

~CHECKMATE2021

Solution 2

$\triangle BCD$ is a 3-4-5 right triangle. So the area of $\triangle BCD$ is 6. Then we can use Heron's formula to compute the area of $\triangle ABD$ whose sides have lengths 5,12,and 13. The area of $\triangle ABD$ = $\sqrt{s(s-5)(s-12)(s-13)}$ , where s is the semi-perimeter of the triangle, that is $s=(5+12+13)/2=15.$ Thus, the area of $\triangle ABD$ is 30, so the area of $ABCD$ is $30-6 = \boxed{\textbf{(B)}\ 24}.$ ---LarryFlora

Video Solution (CREATIVE THINKING + ANALYSIS!!!)

https://youtu.be/ZYmCHlMBuIQ

~Education, the Study of Everything

Video Solution

https://www.youtube.com/watch?v=DU95-maui9U&ab_channel=WhyMath (http://youtube/DU95-maui9U)

~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/51K3uCzntWs?t=2010

~ pi_is_3.14

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png