Difference between revisions of "2005 AMC 10A Problems/Problem 4"
Dairyqueenxd (talk | contribs) (→Solution 1) |
(→Problem) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 7: | Line 7: | ||
CHECK OUT Video Solution: https://youtu.be/X8QyT5RR-_M | CHECK OUT Video Solution: https://youtu.be/X8QyT5RR-_M | ||
+ | ==Video Solution 2== | ||
+ | https://youtu.be/5Bz7PC-tgyU | ||
+ | |||
+ | ~Charles3829 | ||
==Solution 1== | ==Solution 1== | ||
Line 34: | Line 38: | ||
<math>4l^2 + l^2 = x^2</math><math>,</math> <math>5l^2 = x^2</math><math>,</math> and <math>l^2 = \frac{x^2}{5}</math>. | <math>4l^2 + l^2 = x^2</math><math>,</math> <math>5l^2 = x^2</math><math>,</math> and <math>l^2 = \frac{x^2}{5}</math>. | ||
− | Therefore, the area is <math>\frac{2}{5}x^2 | + | Therefore, the area is <math>\boxed{\textbf{(B) }\frac{2}{5}x^2}</math> |
-mobius247 | -mobius247 |
Latest revision as of 14:12, 1 November 2024
Problem
A rectangle with a diagonal of length is twice as long as it is wide. What is the area of the rectangle?
Video Solution
CHECK OUT Video Solution: https://youtu.be/X8QyT5RR-_M
Video Solution 2
~Charles3829
Solution 1
Let's set our length to and our width to .
We have our area as and our diagonal: as (Pythagoras Theorem)
Now we can plug this value into the answer choices and test which one will give our desired area of .
- All of the answer choices have our value squared, so keep in mind that
Through testing, we see that
So our correct answer choice is
-JinhoK
Solution 2
Call the length and the width .
The area of the rectangle is
is the hypotenuse of the right triangle with and as legs. By the Pythagorean theorem,
and .
Therefore, the area is
-mobius247
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.