Difference between revisions of "2017 AMC 8 Problems/Problem 19"

(Video Solution)
(Video Solution)
 
(16 intermediate revisions by 8 users not shown)
Line 5: Line 5:
  
 
==Solution 1==
 
==Solution 1==
Factoring out <math>98!+99!+100!</math>, we have <math>98!(1+99+99*100)</math> which is <math>98!(10000)</math> Next, <math>98!</math> has <math>\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22</math> factors of <math>5</math>. The <math>19</math> is because of all the multiples of <math>5</math>. Now <math>10,000</math> has <math>4</math> factors of <math>5</math>, so there are a total of <math>22 + 4 = \boxed{\textbf{(D)}\ 26}</math> factors of <math>5</math>.
+
Factoring out <math>98!+99!+100!</math>, we have <math>98! (1+99+99*100)</math>, which is <math>98! (10000)</math>. Next, <math>98!</math> has <math>\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22</math> factors of <math>5</math>. The <math>19</math> is because of all the multiples of <math>5</math>.The <math>3</math> is because of all the multiples of <math>25</math>. Now, <math>10,000</math> has <math>4</math> factors of <math>5</math>, so there are a total of <math>22 + 4 = \boxed{\textbf{(D)}\ 26}</math> factors of <math>5</math>.
  
==Solution 2==
+
~CHECKMATE2021
Also keep in mind that number of <math>5</math>’s in <math>98!(10,000)</math> is the same as the number of trailing zeros. Number of zeros is <math>98!</math> means we need pairs of <math>5</math>’s and <math>2</math>’s; we know there will be many more <math>2</math>’s, so we seek to find number of <math>5</math>’s in <math>98!</math> which solution tells us and that is <math>22</math> factors of <math>5</math>. <math>10,000</math> has <math>4</math> trailing zeros, so it has <math>4</math> factors of <math>5</math> and <math>22 + 4 = 26</math>.
 
  
== Video Solution ==
+
==Video Solution (CREATIVE THINKING + ANALYSIS!!!)==
https://youtu.be/alj9Y8jGNz8
+
https://youtu.be/WKux87BEO1U
  
https://youtu.be/HISL2-N5NVg?t=817
+
~Education, the Study of Everything
 
 
~ pi_is_3.14
 
 
 
https://youtu.be/meEuDzrM5Ac
 
 
 
~savannahsolver
 
  
 
==See Also==
 
==See Also==

Latest revision as of 22:34, 24 May 2024

Problem

For any positive integer $M$, the notation $M!$ denotes the product of the integers $1$ through $M$. What is the largest integer $n$ for which $5^n$ is a factor of the sum $98!+99!+100!$ ?

$\textbf{(A) }23\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27$

Solution 1

Factoring out $98!+99!+100!$, we have $98! (1+99+99*100)$, which is $98! (10000)$. Next, $98!$ has $\left\lfloor\frac{98}{5}\right\rfloor + \left\lfloor\frac{98}{25}\right\rfloor = 19 + 3 = 22$ factors of $5$. The $19$ is because of all the multiples of $5$.The $3$ is because of all the multiples of $25$. Now, $10,000$ has $4$ factors of $5$, so there are a total of $22 + 4 = \boxed{\textbf{(D)}\ 26}$ factors of $5$.

~CHECKMATE2021

Video Solution (CREATIVE THINKING + ANALYSIS!!!)

https://youtu.be/WKux87BEO1U

~Education, the Study of Everything

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png