Difference between revisions of "1993 AJHSME Problems/Problem 12"

(Created page with "==Problem== If each of the three operation signs, <math>+</math>, <math>-</math>, <math>\times </math>, is used exactly ONCE in one of the blanks in the expression <cmath>5\hsp...")
 
m (Problem)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
If each of the three operation signs, <math>+</math>, <math>-</math>, <math>\times </math>, is used exactly ONCE in one of the blanks in the expression
+
If each of the three operation signs, <math>+</math>, <math>\text{--}</math>, <math>\times </math>, is used exactly ONCE in one of the blanks in the expression
  
 
<cmath>5\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}4\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}6\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}3</cmath>
 
<cmath>5\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}4\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}6\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}3</cmath>
Line 10: Line 10:
  
 
==Solution==
 
==Solution==
 +
There are a reasonable number of ways to place the operation signs, so guess and check to find that <math>5-4+6 \times 3 = \boxed{\text{(E)}\ 19}</math>.
 +
 +
==See Also==
 +
{{AJHSME box|year=1993|num-b=11|num-a=13}}
 +
{{MAA Notice}}

Latest revision as of 23:47, 15 January 2023

Problem

If each of the three operation signs, $+$, $\text{--}$, $\times$, is used exactly ONCE in one of the blanks in the expression

\[5\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}4\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}6\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}3\]

then the value of the result could equal

$\text{(A)}\ 9 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 19$

Solution

There are a reasonable number of ways to place the operation signs, so guess and check to find that $5-4+6 \times 3 = \boxed{\text{(E)}\ 19}$.

See Also

1993 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png