Difference between revisions of "1993 AJHSME Problems/Problem 14"

(Created page with "==Problem== The nine squares in the table shown are to be filled so that every row and every column contains each of the numbers <math>1,2,3</math>. Then <math>A+B=</math> \[\...")
 
m (Fixing the second table in the solution)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
  
 
The nine squares in the table shown are to be filled so that every row and every column contains each of the numbers <math>1,2,3</math>.  Then <math>A+B=</math>
 
The nine squares in the table shown are to be filled so that every row and every column contains each of the numbers <math>1,2,3</math>.  Then <math>A+B=</math>
  
\[\begin{tabular}{|c|c|c|} \hline
+
<cmath> \begin{tabular}{|c|c|c|}\hline 1 & &\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular} </cmath>
1 & & \\ \hline
 
& 2 & A \\ \hline
 
& & B \\ \hline
 
\end{tabular}\]
 
  
 
<math>\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 6</math>
 
<math>\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 6</math>
 +
 +
==Solution==
 +
 +
The square connected both to 1 and 2 cannot be the same as either of them, so must be 3.
 +
 +
<cmath> \begin{tabular}{|c|c|c|}\hline 1 & 3 &\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular} </cmath>
 +
 +
The last square in the top row cannot be either 1 or 3, so it must be 2.
 +
 +
<cmath> \begin{tabular}{|c|c|c|}\hline 1 & 3 & 2\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular} </cmath>
 +
 +
The other two squares in the rightmost column with A and B cannot be two, so they must be 1 and 3 and therefore have a sum of <math>1+3=\boxed{\text{(C)}\ 4}</math>.
 +
 +
==See Also==
 +
{{AJHSME box|year=1993|num-b=13|num-a=15}}
 +
{{MAA Notice}}

Latest revision as of 11:43, 11 August 2021

Problem

The nine squares in the table shown are to be filled so that every row and every column contains each of the numbers $1,2,3$. Then $A+B=$

\[\begin{tabular}{|c|c|c|}\hline 1 & &\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular}\]

$\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 6$

Solution

The square connected both to 1 and 2 cannot be the same as either of them, so must be 3.

\[\begin{tabular}{|c|c|c|}\hline 1 & 3 &\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular}\]

The last square in the top row cannot be either 1 or 3, so it must be 2.

\[\begin{tabular}{|c|c|c|}\hline 1 & 3 & 2\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular}\]

The other two squares in the rightmost column with A and B cannot be two, so they must be 1 and 3 and therefore have a sum of $1+3=\boxed{\text{(C)}\ 4}$.

See Also

1993 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png