Difference between revisions of "1961 AHSME Problems/Problem 33"

(Created page with "==Problem 33== The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is: <math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\...")
 
m (Solution)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Problem 33==
+
==Problem ==
  
 
The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is:
 
The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is:
  
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3}\qquad\textbf{(E)}\ \text{More than three, but finite} } </math>
+
<cmath>\textbf{(A)} \ 0 \qquad\textbf{(B)} \ 1 \qquad \textbf{(C)} \ 2 \qquad\textbf{(D)} \ 3\qquad \textbf{(E)} \ \text{More than three, but finite}</cmath>
 +
 
 +
==Solution==
 +
Let <math>a = 2^x</math> and <math>b = 3^y</math>.  Substituting these values results in
 +
<cmath>a^2 - b^2 = 55</cmath>
 +
Factor the [[difference of squares]] to get
 +
<cmath>(a + b)(a - b) = 55</cmath>
 +
If <math>y < 0</math>, then <math>55 + 3^{2y} < 64</math>, so <math>y</math> can not be negative.  If <math>x < 0</math>, then <math>2^{2x} < 1</math>.  Since <math>3^{2y}</math> is always positive, the result would be way less than <math>55</math>, so <math>x</math> can not be negative.  Thus, <math>x</math> and <math>y</math> have to be [[nonnegative]], so <math>a</math> and <math>b</math> are [[integers]].  Thus,
 +
<cmath>a+b=55 \text{ and } a-b=1</cmath>
 +
<cmath>\text{or}</cmath>
 +
<cmath>a+b=11 \text{ and } a-b=5</cmath>
 +
From the first case, <math>a = 28</math> and <math>b = 27</math>.  Since <math>2^x = 28</math> does not have an integral solution, the first case does not work.
 +
From the second case, <math>a = 8</math> and <math>b = 3</math>.  Thus, <math>x = 3</math> and <math>y = 1</math>.  Thus, there is only one solution, which is answer choice <math>\boxed{\textbf{(B)}}</math>.
 +
 
 +
==See Also==
 +
{{AHSME 40p box|year=1961|num-b=32|num-a=34}}
 +
 
 +
[[Category:Intermediate Number Theory Problems]]

Latest revision as of 14:11, 31 May 2018

Problem

The number of solutions of $2^{2x}-3^{2y}=55$, in which $x$ and $y$ are integers, is:

\[\textbf{(A)} \ 0 \qquad\textbf{(B)} \ 1 \qquad \textbf{(C)} \ 2 \qquad\textbf{(D)} \ 3\qquad \textbf{(E)} \ \text{More than three, but finite}\]

Solution

Let $a = 2^x$ and $b = 3^y$. Substituting these values results in \[a^2 - b^2 = 55\] Factor the difference of squares to get \[(a + b)(a - b) = 55\] If $y < 0$, then $55 + 3^{2y} < 64$, so $y$ can not be negative. If $x < 0$, then $2^{2x} < 1$. Since $3^{2y}$ is always positive, the result would be way less than $55$, so $x$ can not be negative. Thus, $x$ and $y$ have to be nonnegative, so $a$ and $b$ are integers. Thus, \[a+b=55 \text{ and } a-b=1\] \[\text{or}\] \[a+b=11 \text{ and } a-b=5\] From the first case, $a = 28$ and $b = 27$. Since $2^x = 28$ does not have an integral solution, the first case does not work. From the second case, $a = 8$ and $b = 3$. Thus, $x = 3$ and $y = 1$. Thus, there is only one solution, which is answer choice $\boxed{\textbf{(B)}}$.

See Also

1961 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 32
Followed by
Problem 34
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions