Difference between revisions of "2012 AIME I Problems/Problem 6"

m (Solution 2)
(Video Solution)
 
(20 intermediate revisions by 12 users not shown)
Line 1: Line 1:
==Problem 6==
+
==Problem ==
 
The complex numbers <math>z</math> and <math>w</math> satisfy <math>z^{13} = w,</math> <math>w^{11} = z,</math> and the imaginary part of <math>z</math> is <math>\sin{\frac{m\pi}{n}}</math>, for relatively prime positive integers <math>m</math> and <math>n</math> with <math>m<n.</math> Find <math>n.</math>
 
The complex numbers <math>z</math> and <math>w</math> satisfy <math>z^{13} = w,</math> <math>w^{11} = z,</math> and the imaginary part of <math>z</math> is <math>\sin{\frac{m\pi}{n}}</math>, for relatively prime positive integers <math>m</math> and <math>n</math> with <math>m<n.</math> Find <math>n.</math>
  
==Solutions==
+
==Solution==
  
===Solution 1===
+
Substituting the first equation into the second, we find that <math>(z^{13})^{11} = z</math> and thus <math>z^{143} = z.</math> We know that <math>z \neq 0,</math> because we are given the imaginary part of <math>z,</math> so we can divide by <math>z</math> to get <math>z^{142} = 1.</math> So, <math>z</math> must be a <math>142</math>nd root of unity, and thus, by De Moivre's theorem, the imaginary part of <math>z</math> will be of the form <math>\sin{\frac{2k\pi}{142}} = \sin{\frac{k\pi}{71}},</math> where <math>k \in \{1, 2, \ldots, 70\}.</math> Note that <math>71</math> is prime and <math>k<71</math> by the conditions of the problem, so the denominator in the argument of this value will always be <math>71.</math> Thus, <math>n = \boxed{071}.</math>
Substituting the first equation into the second, we find that <math>(z^{13})^{11} = z</math> and thus <math>z^{142} = 1.</math> So <math>z</math> must be a <math>142</math>nd root of unity, and thus the imaginary part of <math>z</math> will be <math>\sin{\frac{2m\pi}{142}} = \sin{\frac{m\pi}{71}}</math> for some <math>m</math> with <math>0 \le m < 142.</math> But note that <math>71</math> is prime and <math>m<71</math> by the conditions of the problem, so the denominator in the argument of this value will always be <math>71</math> and thus <math>n = \boxed{071.}</math>
 
  
===Solution 2===
+
==Video Solutions==
Note that <math>w^{143}=w</math> and similar for <math>z</math>, and they are not equal to <math>0</math> because the question implies the imaginary part is positive.  Thus <math>w^{142}=z^{142}=1</math>, so each is of the form <math>\sin(2 \pi k/142)</math> where <math>k</math> is a positive integer between <math>0</math> and <math>141</math> inclusive.  This simplifies to <math>sin(pi*k/71)</math>, and <math>071</math> is prime, so it is the only possible denominator, and thus is the answer.
+
 
 +
https://www.youtube.com/watch?v=cQmmkfZvPgU&t=30s
 +
 
 +
https://www.youtube.com/watch?v=DMka35X-3WI&list=PLyhPcpM8aMvIo_foUDwmXnQClMHngjGto&index=6 (Solution by Richard Rusczyk) - AMBRIGGS
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2012|n=I|num-b=5|num-a=7}}
 
{{AIME box|year=2012|n=I|num-b=5|num-a=7}}
 +
{{MAA Notice}}

Latest revision as of 16:15, 30 July 2022

Problem

The complex numbers $z$ and $w$ satisfy $z^{13} = w,$ $w^{11} = z,$ and the imaginary part of $z$ is $\sin{\frac{m\pi}{n}}$, for relatively prime positive integers $m$ and $n$ with $m<n.$ Find $n.$

Solution

Substituting the first equation into the second, we find that $(z^{13})^{11} = z$ and thus $z^{143} = z.$ We know that $z \neq 0,$ because we are given the imaginary part of $z,$ so we can divide by $z$ to get $z^{142} = 1.$ So, $z$ must be a $142$nd root of unity, and thus, by De Moivre's theorem, the imaginary part of $z$ will be of the form $\sin{\frac{2k\pi}{142}} = \sin{\frac{k\pi}{71}},$ where $k \in \{1, 2, \ldots, 70\}.$ Note that $71$ is prime and $k<71$ by the conditions of the problem, so the denominator in the argument of this value will always be $71.$ Thus, $n = \boxed{071}.$

Video Solutions

https://www.youtube.com/watch?v=cQmmkfZvPgU&t=30s

https://www.youtube.com/watch?v=DMka35X-3WI&list=PLyhPcpM8aMvIo_foUDwmXnQClMHngjGto&index=6 (Solution by Richard Rusczyk) - AMBRIGGS

See also

2012 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png