Difference between revisions of "1952 AHSME Problems/Problem 24"
(Blanked page) |
|||
Line 1: | Line 1: | ||
+ | == Problem== | ||
+ | In the figure, it is given that angle <math> C = 90^{\circ} </math>, <math> \overline{AD} = \overline{DB} </math>, <math> DE \perp AB </math>, <math> \overline{AB} = 20 </math>, and <math> \overline{AC} = 12 </math>. The area of quadrilateral <math> ADEC </math> is: | ||
+ | <asy> | ||
+ | unitsize(7); | ||
+ | defaultpen(linewidth(.8pt)+fontsize(10pt)); | ||
+ | pair A,B,C,D,E; | ||
+ | A=(0,0); B=(20,0); C=(36/5,48/5); D=(10,0); E=(10,75/10); | ||
+ | draw(A--B--C--cycle); draw(D--E); | ||
+ | label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$E$",E,NE); | ||
+ | draw(rightanglemark(B,D,E,30)); | ||
+ | </asy> | ||
+ | |||
+ | <math> \textbf{(A)}\ 75\qquad\textbf{(B)}\ 58\frac{1}{2}\qquad\textbf{(C)}\ 48\qquad\textbf{(D)}\ 37\frac{1}{2}\qquad\textbf{(E)}\ \text{none of these} </math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | <math> [ADEC]=[BCA]-[BDE] </math> | ||
+ | |||
+ | Note that, as right triangles sharing <math> \angle B </math>, <math> \triangle BDE \sim \triangle BCA </math>. | ||
+ | |||
+ | <math> \overline{BD}=\frac{20}{2}=10 </math> | ||
+ | |||
+ | Because the sides of <math> \triangle BCA </math> are in the ratio <math> 3:4:5 </math>, <math> \overline{BC}=16 </math>. | ||
+ | |||
+ | The sides of our triangles are in the ratio <math> \frac{10}{16}=\frac{5}{8} </math>, and the ratio of their areas is <math> \left(\frac{5}{8}\right)^2=\frac{25}{64} </math>. | ||
+ | |||
+ | <math> [BCA]=\frac{12 \cdot 16}{2}=96</math>, and <math> [BDE]=\frac{96 \cdot 25}{64}=\frac{75}{2} </math>. | ||
+ | |||
+ | <math> [ADEC]=\frac{192-75}{2}=\boxed{\textbf{(B)}\ 58\frac{1}{2}} </math> | ||
+ | |||
+ | ==See also== | ||
+ | {{AHSME 50p box|year=1952|num-b=23|num-a=25}} | ||
+ | {{MAA Notice}} |
Latest revision as of 00:06, 25 January 2014
Problem
In the figure, it is given that angle , , , , and . The area of quadrilateral is:
Solution
Note that, as right triangles sharing , .
Because the sides of are in the ratio , .
The sides of our triangles are in the ratio , and the ratio of their areas is .
, and .
See also
1952 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.