Difference between revisions of "1964 AHSME Problems/Problem 29"
(Created page with "==Problem== In this figure <math>\angle RFS=\angle FDR</math>, <math>FD=4</math> inches, <math>DR=6</math> inches, <math>FR=5</math> inches, <math>FS=7\dfrac{1}{2}</math> inches...") |
(→Solution) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | In this figure <math>\angle RFS=\angle FDR</math>, <math>FD=4</math> inches, <math>DR=6</math> inches, <math>FR=5</math> inches, <math>FS=7\dfrac{1}{2}</math> inches. The | + | In this figure <math>\angle RFS=\angle FDR</math>, <math>FD=4</math> inches, <math>DR=6</math> inches, <math>FR=5</math> inches, <math>FS=7\dfrac{1}{2}</math> inches. The length of <math>RS</math>, in inches, is: |
<math>\textbf{(A) }\text{undetermined}\qquad\textbf{(B) }4\qquad\textbf{(C) }5\dfrac{1}{2}\qquad\textbf{(D) }6\qquad\textbf{(E) }6\dfrac{1}{2}\qquad</math> | <math>\textbf{(A) }\text{undetermined}\qquad\textbf{(B) }4\qquad\textbf{(C) }5\dfrac{1}{2}\qquad\textbf{(D) }6\qquad\textbf{(E) }6\dfrac{1}{2}\qquad</math> | ||
Line 24: | Line 24: | ||
label("$7\frac{1}{2}$",3.75,dir(-90)); | label("$7\frac{1}{2}$",3.75,dir(-90)); | ||
</asy> | </asy> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | We examine <math>\triangle RDF</math> and <math>\triangle SFR</math>. We are given <math>\angle RDF \cong \angle SFR</math>. Also note that <math>\frac{SF}{RD} = \frac{7.5}{6} = 1.25</math> and <math>\frac{FR}{DF} = \frac{5}{4} = 1.25</math>, so <math>\frac{SF}{RD} = \frac{FR}{DF}</math>. | ||
+ | |||
+ | If two triangles have two pairs of sides that are proportional, and the included angles are congruent, then the two triangles are similar by SAS congruence. Therefore, the third pair of sides must also be in the same proportion, so | ||
+ | |||
+ | <math>\frac{SF}{RD} = \frac{FR}{DF} = \frac{RS}{FR} = 1.25</math> | ||
+ | |||
+ | <math>\frac{RS}{FR} = 1.25</math> | ||
+ | |||
+ | <math>\frac{RS}{5} = 1.25</math> | ||
+ | |||
+ | <math>RS = 6.25</math>, which is answer <math>\boxed{\textbf{(E) }}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Let <math>\angle RFS = \angle FDR = \theta</math>. By Cosine Law, we have: | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | RF^2 &= DR^2 + DF^2 - 2(DR)(DF)cos(\theta) \\ | ||
+ | 5^2 &= 6^2 + 4^2 - 2(6)(4)cos(\theta) \\ | ||
+ | cos(\theta) &= \frac{6^2+4^2-5^2}{2(6)(4)} = \frac{9}{16} | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Applying Cosine Law again in <math>\triangle RFS</math>, we have: | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | RS^2 &= RF^2 + FS^2 - 2(RF)(FS)cos(\theta) \\ | ||
+ | RS^2 &= 25 + (\frac{15}{2})^2 - 2(5)(\frac{15}{2})(\frac{9}{16}) \\ | ||
+ | RS^2 &= \frac{625}{16} | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | giving us <math>RS = \frac{25}{4}</math>, which is the answer <math>\boxed{\textbf{(E)}}</math>. -nullptr07 | ||
+ | |||
+ | ==See Also== | ||
+ | {{AHSME 40p box|year=1964|num-b=28|num-a=30}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 21:59, 29 June 2023
Contents
Problem
In this figure , inches, inches, inches, inches. The length of , in inches, is:
Solution
We examine and . We are given . Also note that and , so .
If two triangles have two pairs of sides that are proportional, and the included angles are congruent, then the two triangles are similar by SAS congruence. Therefore, the third pair of sides must also be in the same proportion, so
, which is answer
Solution 2
Let . By Cosine Law, we have: Applying Cosine Law again in , we have: giving us , which is the answer . -nullptr07
See Also
1964 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 28 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.