Difference between revisions of "1958 AHSME Problems/Problem 17"
(Created page with "== Problem == If <math> x</math> is positive and <math> \log{x} \ge \log{2} \plus{} \frac{1}{2}\log{x}</math>, then: <math> \textbf{(A)}\ {x}\text{ has no minimum or maximum val...") |
(→Solution) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | If <math> x</math> is positive and <math> \log{x} \ge \log{2} | + | If <math> x</math> is positive and <math> \log{x} \ge \log{2} + \frac{1}{2}\log{x}</math>, then: |
<math> \textbf{(A)}\ {x}\text{ has no minimum or maximum value}\qquad \\ | <math> \textbf{(A)}\ {x}\text{ has no minimum or maximum value}\qquad \\ | ||
Line 9: | Line 9: | ||
== Solution == | == Solution == | ||
− | <math>\fbox{}</math> | + | <math>\fbox{E}</math> |
== See Also == | == See Also == | ||
− | {{AHSME 50p box|year=1958|num-b= | + | {{AHSME 50p box|year=1958|num-b=16|num-a=18}} |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 14:55, 6 August 2024
Problem
If is positive and , then:
Solution
See Also
1958 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.