Difference between revisions of "1958 AHSME Problems/Problem 40"
(Created page with "== Problem == Given <math> a_0 \equal{} 1</math>, <math> a_1 \equal{} 3</math>, and the general relation <math> a_n^2 \minus{} a_{n \minus{} 1}a_{n \plus{} 1} \equal{} (\minus{}1...") |
(→Problem) |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Given <math> a_0 | + | Given <math> a_0 = 1</math>, <math> a_1 = 3</math>, and the general relation <math> a_n^2 - a_{n - 1}a_{n + 1} = (-1)^n</math> for <math> n \ge 1</math>. Then <math> a_3</math> equals: |
<math> \textbf{(A)}\ \frac{13}{27}\qquad | <math> \textbf{(A)}\ \frac{13}{27}\qquad | ||
Line 6: | Line 6: | ||
\textbf{(C)}\ 21\qquad | \textbf{(C)}\ 21\qquad | ||
\textbf{(D)}\ 10\qquad | \textbf{(D)}\ 10\qquad | ||
− | \textbf{(E)}\ | + | \textbf{(E)}\ -17</math> |
== Solution == | == Solution == | ||
− | <math> | + | Using the recursive definition, we find that <math>a_3=33</math>. |
+ | |||
+ | ==Sidenote== | ||
+ | All the terms in the sequence <math>a_n</math> are integers. In fact, the sequence <math>a_n</math> satisfies the recursion <math>a_n=3a_{n-1}+a_{n-2}</math> (Prove it!). | ||
== See Also == | == See Also == |
Latest revision as of 22:44, 8 March 2024
Contents
Problem
Given , , and the general relation for . Then equals:
Solution
Using the recursive definition, we find that .
Sidenote
All the terms in the sequence are integers. In fact, the sequence satisfies the recursion (Prove it!).
See Also
1958 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 39 |
Followed by Problem 41 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.