Difference between revisions of "1958 AHSME Problems/Problem 41"
(Created page with "== Problem == The roots of <math> Ax^2 \plus{} Bx \plus{} C \equal{} 0</math> are <math> r</math> and <math> s</math>. For the roots of <math> x^2+px +q =0</math> to be <math> ...") |
Treetor10145 (talk | contribs) (→Solution) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | The roots of <math> Ax^2 | + | The roots of <math> Ax^2 + Bx + C = 0</math> are <math> r</math> and <math> s</math>. For the roots of |
<math> x^2+px +q =0</math> | <math> x^2+px +q =0</math> | ||
to be <math> r^2</math> and <math> s^2</math>, <math> p</math> must equal: | to be <math> r^2</math> and <math> s^2</math>, <math> p</math> must equal: | ||
− | <math> \textbf{(A)}\ \frac{B^2 | + | <math> \textbf{(A)}\ \frac{B^2 - 4AC}{A^2}\qquad |
− | \textbf{(B)}\ \frac{B^2 | + | \textbf{(B)}\ \frac{B^2 - 2AC}{A^2}\qquad |
− | \textbf{(C)}\ \frac{2AC | + | \textbf{(C)}\ \frac{2AC - B^2}{A^2}\qquad \\ |
− | \textbf{(D)}\ B^2 | + | \textbf{(D)}\ B^2 - 2C\qquad |
− | \textbf{(E)}\ 2C | + | \textbf{(E)}\ 2C - B^2</math> |
+ | == Solution == | ||
+ | By Vieta's, <math>r + s = -\frac{B}{A}</math>, <math>rs = \frac{C}{A}</math>, and <math>r^2 + s^2 = -p</math>. Note that <math>(r+s)^2 = r^2 + s^2 + 2rs</math>. | ||
+ | |||
+ | Therefore, <math>(r + s)^2 - 2rs = r^2 + s^2</math>, or <math>-\left(\frac{B}{A}\right)^2 - \frac{2C}{A} = -p</math>. | ||
+ | |||
+ | Simplifying, <math>\frac{B^2 - 2CA}{A^2} = -p</math>. | ||
− | = | + | Finally, multiply both sides by <math>-1</math> to get <math>p = \frac{2CA - B^2}{A^2}</math>, making the answer <math>\fbox{C}</math>. |
− | <math>\fbox{}</math> | ||
== See Also == | == See Also == |
Latest revision as of 14:10, 22 February 2018
Problem
The roots of are and . For the roots of
to be and , must equal:
Solution
By Vieta's, , , and . Note that .
Therefore, , or .
Simplifying, .
Finally, multiply both sides by to get , making the answer .
See Also
1958 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 40 |
Followed by Problem 42 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.