Difference between revisions of "2015 AMC 10A Problems/Problem 1"
m (→Solution) |
(→Video Solution) |
||
(29 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{duplicate|[[2015 AMC 12A Problems|2015 AMC 12A #1]] and [[2015 AMC 10A Problems|2015 AMC 10A #1]]}} | ||
==Problem== | ==Problem== | ||
What is the value of <math>(2^0-1+5^2-0)^{-1}\times5?</math> | What is the value of <math>(2^0-1+5^2-0)^{-1}\times5?</math> | ||
− | <math> \textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D) | + | <math> \textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}\ \frac{5}{24}\qquad\textbf{(E)}\ 25</math> |
+ | ==Solution== | ||
+ | <math>(2^0-1+5^2-0)^{-1}\times5 = (1-1+25-0)^{-1} \times 5 = 25^{-1} \times 5 = \frac{1}{25} \times 5 = \boxed{\textbf{(C) } \, \frac{1}{5}}</math>. | ||
+ | |||
+ | ==Video Solution (CREATIVE THINKING)== | ||
+ | https://youtu.be/yH4KLfe9p88 | ||
+ | |||
+ | ~Education, the Study of Everything | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/UdENmDoPGHU | ||
− | + | ~savannahsolver | |
− | + | ==See Also== | |
+ | {{AMC10 box|year=2015|ab=A|before=First Problem|num-a=2}} | ||
+ | {{AMC12 box|year=2015|ab=A|before=First Problem|num-a=2}} | ||
+ | {{MAA Notice}} |
Latest revision as of 22:08, 26 June 2023
- The following problem is from both the 2015 AMC 12A #1 and 2015 AMC 10A #1, so both problems redirect to this page.
Problem
What is the value of
Solution
.
Video Solution (CREATIVE THINKING)
https://youtu.be/yH4KLfe9p88
~Education, the Study of Everything
Video Solution
~savannahsolver
See Also
2015 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2015 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.