Difference between revisions of "1983 AHSME Problems/Problem 1"

(Created page with "==Problem== If <math>x \neq 0, \frac x{2} = y^2</math> and <math>\frac{x}{4} = 4y</math>, then <math>x</math> equals <math>\textbf{(A)}\ 8\qquad \textbf{(B)}\ 16\qquad \textbf...")
 
m (Fixed formatting)
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
If <math>x \neq 0, \frac x{2} = y^2</math> and <math>\frac{x}{4} = 4y</math>, then <math>x</math> equals
 
If <math>x \neq 0, \frac x{2} = y^2</math> and <math>\frac{x}{4} = 4y</math>, then <math>x</math> equals
 +
 
<math>\textbf{(A)}\ 8\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 32\qquad \textbf{(D)}\ 64\qquad \textbf{(E)}\ 128</math>
 
<math>\textbf{(A)}\ 8\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 32\qquad \textbf{(D)}\ 64\qquad \textbf{(E)}\ 128</math>
  
 
==Solution==
 
==Solution==
From <math>\frac{x}{4} = 4y</math>, we get <math>x=16y</math>. Plugging in the other equation, <math>\frac{16y}{2} = y^2</math>, so <math>y^2-8y=0</math>. Factoring, we get <math>y(y-8)=0</math>, so the solutions are <math>0</math> and <math>8</math>. Since <math>x \neq 0</math>, the answer is <math>\textbf{(A)}\ 8</math>.
+
From <math>\frac{x}{4} = 4y</math>, we get <math>x=16y</math>. Plugging in the other equation, <math>\frac{16y}{2} = y^2</math>, so <math>y^2-8y=0</math>. Factoring, we get <math>y(y-8)=0</math>, so the solutions are <math>0</math> and <math>8</math>. Since <math>x \neq 0</math>, we also have <math>y \neq 0</math>, so <math>y=8</math>. Hence <math>x=16\cdot 8 = \boxed{\textbf{(E)}\ 128}</math>.
 +
==See Also==
 +
{{AHSME box|year=1983|before=First Question|num-a=2}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 23:38, 19 February 2019

Problem

If $x \neq 0, \frac x{2} = y^2$ and $\frac{x}{4} = 4y$, then $x$ equals

$\textbf{(A)}\ 8\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 32\qquad \textbf{(D)}\ 64\qquad \textbf{(E)}\ 128$

Solution

From $\frac{x}{4} = 4y$, we get $x=16y$. Plugging in the other equation, $\frac{16y}{2} = y^2$, so $y^2-8y=0$. Factoring, we get $y(y-8)=0$, so the solutions are $0$ and $8$. Since $x \neq 0$, we also have $y \neq 0$, so $y=8$. Hence $x=16\cdot 8 = \boxed{\textbf{(E)}\ 128}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png