Difference between revisions of "2017 AMC 12A Problems/Problem 19"
Thomas0115 (talk | contribs) (→Problem) |
(→Solution 1) |
||
(12 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | A | + | A square with side length <math>x</math> is inscribed in a right triangle with sides of length <math>3</math>, <math>4</math>, and <math>5</math> so that one vertex of the square coincides with the right-angle vertex of the triangle. A square with side length <math>y</math> is inscribed in another right triangle with sides of length <math>3</math>, <math>4</math>, and <math>5</math> so that one side of the square lies on the hypotenuse of the triangle. What is <math>\frac{x}{y}</math>? |
− | <math> \textbf{(A)}\ | + | <math> \textbf{(A)}\ \frac{12}{13} |
− | \qquad \textbf{(B)}\ | + | \qquad \textbf{(B)}\ \frac{35}{37} |
− | \qquad\textbf{(C)}\ | + | \qquad\textbf{(C)}\ 1 |
− | \qquad\textbf{(D)}\ | + | \qquad\textbf{(D)}\ \frac{37}{35} |
− | \qquad\textbf{(E)}\ | + | \qquad\textbf{(E)}\ \frac{13}{12}</math> |
+ | |||
+ | ==Solution 1== | ||
+ | |||
+ | Analyze the first right triangle. | ||
+ | |||
+ | <asy> | ||
+ | pair A,B,C; | ||
+ | pair D, e, F; | ||
+ | A = (0,0); | ||
+ | B = (4,0); | ||
+ | C = (0,3); | ||
+ | |||
+ | D = (0, 12/7); | ||
+ | e = (12/7 , 12/7); | ||
+ | F = (12/7, 0); | ||
+ | |||
+ | draw(A--B--C--cycle); | ||
+ | draw(D--e--F); | ||
+ | |||
+ | label("$x$", D/2, W); | ||
+ | label("$A$", A, SW); | ||
+ | label("$B$", B, SE); | ||
+ | label("$C$", C, N); | ||
+ | label("$D$", D, W); | ||
+ | label("$E$", e, NE); | ||
+ | label("$F$", F, S); | ||
+ | </asy> | ||
+ | |||
+ | Note that <math>\triangle ABC</math> and <math>\triangle FBE</math> are similar, so <math>\frac{BF}{FE} = \frac{AB}{AC}</math>. This can be written as <math>\frac{4-x}{x}=\frac{4}{3}</math>. Solving, <math>x = \frac{12}{7}</math>. | ||
+ | |||
+ | Now we analyze the second triangle. | ||
+ | |||
+ | |||
+ | <asy> | ||
+ | pair A,B,C; | ||
+ | pair q, R, S, T; | ||
+ | A = (0,0); | ||
+ | B = (4,0); | ||
+ | C = (0,3); | ||
+ | |||
+ | q = (1.297, 0); | ||
+ | R = (2.27 , 1.297); | ||
+ | S = (0.973, 2.27); | ||
+ | T = (0, 0.973); | ||
+ | |||
+ | draw(A--B--C--cycle); | ||
+ | draw(q--R--S--T--cycle); | ||
+ | |||
+ | label("$y$", (q+R)/2, NW); | ||
+ | label("$A'$", A, SW); | ||
+ | label("$B'$", B, SE); | ||
+ | label("$C'$", C, N); | ||
+ | label("$Q$", (q-(0,0.3))); | ||
+ | label("$R$", R, NE); | ||
+ | label("$S$", S, NE); | ||
+ | label("$T$", T, W); | ||
+ | </asy> | ||
+ | |||
+ | Similarly, <math>\triangle A'B'C'</math> and <math>\triangle RB'Q</math> are similar, so <math>RB' = \frac{4}{3}y</math>, and <math>C'S = \frac{3}{4}y</math>. Thus, <math>C'B' = C'S + SR + RB' = \frac{4}{3}y + y + \frac{3}{4}y = 5</math>. Solving for <math>y</math>, we get <math>y = \frac{60}{37}</math>. Thus, <math>\frac{x}{y} = \frac{37}{35} \implies \boxed{\textbf{D}}</math>. | ||
+ | |||
+ | ==Video Solution (HOW TO THINK CREATIVELY!!!)== | ||
+ | https://youtu.be/BbEgHNtuY8c | ||
+ | |||
+ | ~Education, the Study of Everything | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2017|ab=A|num-b=20|num-a=22}} | ||
+ | {{AMC12 box|year=2017|ab=A|num-b=18|num-a=20}} | ||
+ | {{MAA Notice}} |
Latest revision as of 13:55, 10 June 2023
Problem
A square with side length is inscribed in a right triangle with sides of length , , and so that one vertex of the square coincides with the right-angle vertex of the triangle. A square with side length is inscribed in another right triangle with sides of length , , and so that one side of the square lies on the hypotenuse of the triangle. What is ?
Solution 1
Analyze the first right triangle.
Note that and are similar, so . This can be written as . Solving, .
Now we analyze the second triangle.
Similarly, and are similar, so , and . Thus, . Solving for , we get . Thus, .
Video Solution (HOW TO THINK CREATIVELY!!!)
~Education, the Study of Everything
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.