Difference between revisions of "2017 AMC 8 Problems/Problem 16"

(Fixed Solution)
(Solution 3)
 
(54 intermediate revisions by 27 users not shown)
Line 1: Line 1:
==Problem 16==
+
==Problem==
  
 
In the figure below, choose point <math>D</math> on <math>\overline{BC}</math> so that <math>\triangle ACD</math> and <math>\triangle ABD</math> have equal perimeters. What is the area of <math>\triangle ABD</math>?
 
In the figure below, choose point <math>D</math> on <math>\overline{BC}</math> so that <math>\triangle ACD</math> and <math>\triangle ABD</math> have equal perimeters. What is the area of <math>\triangle ABD</math>?
 +
 
<asy>draw((0,0)--(4,0)--(0,3)--(0,0));
 
<asy>draw((0,0)--(4,0)--(0,3)--(0,0));
 
label("$A$", (0,0), SW);
 
label("$A$", (0,0), SW);
Line 12: Line 13:
 
<math>\textbf{(A) }\frac{3}{4}\qquad\textbf{(B) }\frac{3}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\frac{12}{5}\qquad\textbf{(E) }\frac{5}{2}</math>
 
<math>\textbf{(A) }\frac{3}{4}\qquad\textbf{(B) }\frac{3}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\frac{12}{5}\qquad\textbf{(E) }\frac{5}{2}</math>
  
==Solution==
+
==Solution 2==
 +
 
 +
We know that the perimeters of the two small triangles are <math>3+CD+AD</math> and <math>4+BD+AD</math>. Setting both equal and using <math>BD+CD = 5</math>, we have <math>BD = 2</math> and <math>CD = 3</math>. Now, we simply have to find the area of <math>\triangle ABD</math>. Since <math>\frac{BD}{CD} = \frac{2}{3}</math>, we must have <math>\frac{[ABD]}{[ACD]} = 2/3</math>. Combining this with the fact that <math>[ABC] = [ABD] + [ACD] = \frac{3\cdot4}{2} = 6</math>, we get <math>[ABD] = \frac{2}{5}[ABC] = \frac{2}{5} \cdot 6 = \boxed{\textbf{(D) } \frac{12}{5}}</math>.
  
We know that the perimeters of the two small triangles are <math>3+CD+AD</math> and <math>4+BD+AD</math>. Setting both equal and using <math>BD+CD = 5</math>, we have <math>BD = 2</math> and <math>CD = 3</math>. Now, we simply have to find the area of <math>\triangle ABD</math>. Since <math>\frac{BD}{CD} = \frac{2}{3}</math>, we must have <math>\frac{[ABD]}{ACD]} = 2/3. Combining this with the fact that </math>[ABC] = [ABD] + [ACD] = \frac{3*4}{2} = 6<math>, we get </math>[ABD] = \frac{2}{5}[ABC] = \frac{2}{5} * 6 = \boxed{\textbf{(D) }\$ \frac{12}{5}}$
+
==Video Solutions==
 +
https://youtu.be/itz3JyoZQYg
  
 
==See Also==
 
==See Also==

Latest revision as of 22:33, 24 May 2024

Problem

In the figure below, choose point $D$ on $\overline{BC}$ so that $\triangle ACD$ and $\triangle ABD$ have equal perimeters. What is the area of $\triangle ABD$?

[asy]draw((0,0)--(4,0)--(0,3)--(0,0)); label("$A$", (0,0), SW); label("$B$", (4,0), ESE); label("$C$", (0, 3), N); label("$3$", (0, 1.5), W); label("$4$", (2, 0), S); label("$5$", (2, 1.5), NE);[/asy]

$\textbf{(A) }\frac{3}{4}\qquad\textbf{(B) }\frac{3}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\frac{12}{5}\qquad\textbf{(E) }\frac{5}{2}$

Solution 2

We know that the perimeters of the two small triangles are $3+CD+AD$ and $4+BD+AD$. Setting both equal and using $BD+CD = 5$, we have $BD = 2$ and $CD = 3$. Now, we simply have to find the area of $\triangle ABD$. Since $\frac{BD}{CD} = \frac{2}{3}$, we must have $\frac{[ABD]}{[ACD]} = 2/3$. Combining this with the fact that $[ABC] = [ABD] + [ACD] = \frac{3\cdot4}{2} = 6$, we get $[ABD] = \frac{2}{5}[ABC] = \frac{2}{5} \cdot 6 = \boxed{\textbf{(D) } \frac{12}{5}}$.

Video Solutions

https://youtu.be/itz3JyoZQYg

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png